Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T17:57:56.366Z Has data issue: false hasContentIssue false

Self-assembly of plasmonic/excitonic silicon nanocrystals into photonic crystals

Published online by Cambridge University Press:  23 December 2015

Jihua Yang
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
Nicolaas J. Kramer
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
Christopher J. Hogan Jr.
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
Uwe R. Kortshagen*
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
*
Address all correspondence to Uwe R. Kortshagen atkortshagen@umn.edu
Get access

Abstract

In this work, photonic crystals of plasmonic/excitonic semiconductor nanocrystals (NCs) were assembled from non-thermal plasma-synthesized boron (B)-doped silicon (Si) NCs. The photonic crystals form an inverse opal structure with larger refractive index than the conventional crystals made from silica nanoparticles and are aimed at controlling light propagation via excitonic and plasmonic absorption of the B-doped Si NC as well as the photonic band gap of the photonic crystal. Furthermore, we demonstrate self-assembly of mesoscopic photonic crystal particles consisting of B-doped Si NCs with well-defined inverse opal structure via simple aerosol processing.

Type
Plasmonics, Photonics, and Metamaterials Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lassiter, J., Sobhani, H., Fan, J., Kundu, J., Capasso, F., Nordlander, P., and Halas, N.: Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability. Nano Lett. 10, 31843189 (2010).Google Scholar
2. Iskandar, F., Abdullah, M., Yoden, H., and Okuyama, K.: Optical band gap and ultralow dielectric constant materials prepared by a simple dip coating process. J. Appl. Phys. 93, 92379242 (2003).CrossRefGoogle Scholar
3. Waterhouse, G.I.N. and Waterland, M.R.: Opal and inverse opal photonic crystals: Fabrication and characterization. Polyhedron 26, 356368 (2007).Google Scholar
4. Urzhumov, Y.A., Shvets, G., Fan, J., Capasso, F., Brandl, D., and Nordlander, P.: Plasmonic nanoclusters: a path towards negative-index metafluids. Opt. Express 15, 1412914145 (2007).Google Scholar
5. Kuzyk, A., Schreiber, R., Fan, Z., Pardatscher, G., Roller, E.-M., Högele, A., Simmel, F.C., Govorov, A.O. and Liedl, T.: DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311314 (2012).CrossRefGoogle ScholarPubMed
6. Urban, A.S., Shen, X., Wang, Y., Large, N., Wang, H., Knight, M.W., Nordlander, P., Chen, H., and Halas, N.J.: Three-Dimensional Plasmonic Nanoclusters. Nano Lett. 13, 43994403 (2013).Google Scholar
7. Sheikholeslami, S.N., Alaeian, H., Koh, A.L. and Dionne, J.A.: A Metafluid Exhibiting Strong Optical Magnetism. Nano Lett. 13, 41374141 (2013).Google Scholar
8. Iskandar, Mikrajuddin, F. and Okuyama, K.: In Situ Production of Spherical Silica Particles Containing Self-Organized Mesopores. Nano Lett. 1, 231 (2001).Google Scholar
9. Iskandar, F., Nandiyanto, A., Yun, K., Hogan, C., Okuyama, K., and Biswas, P.: Enhanced Photocatalytic Performance of Brookite TiO2 Macroporous Particles Prepared by Spray Drying with Colloidal Templating. Adv. Mater. 19, 1408 (2007).Google Scholar
10. Nandiyanto, A., Hagura, N., Iskandar, F., and Okuyama, K.: Design of a highly ordered and uniform porous structure with multisized pores in film and particle forms using a template-driven self-assembly technique. Acta Mater. 58, 282 (2010).Google Scholar
11. Gradoń, L., Janeczko, S., Abdullah, M., Iskandar, F., and Okuyama, K.: Self-Organization Kinetics of Mesoporous Nanostructured Particles. AIChE J. 50, 2583 (2004).Google Scholar
12. Kramer, N., Schramke, K., and Kortshagen, U.: Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus. Nano Lett. 15, 55975603 (2015).Google Scholar
13. Yang, J., Kramer, N., Schramke, K., Hogan, C., Govorov, A., and Kortshagen, U.: Broadband absorbing exciton-plasmon metafluids with narrow transparency windows. Submitted.Google Scholar
14. Mangolini, L., Thimsen, E., and Kortshagen, U.: High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals. Nano Lett. 5, 655 (2005).Google Scholar
15. Pi, X., Gresback, R., Liptak, R., Campbell, S., and Kortshagen, U.: Doping efficiency, dopant location, and oxidation of Si nanocrystals. Appl. Phys. Lett. 92, 123102-1-3 (2008).Google Scholar
16. Wheeler, L., Neale, N., Chen, T., and Kortshagen, U.: Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals. Nat. Commun. 4, 21972206 (2013).Google Scholar
17. Mittleman, D., Bertone, J.F., Jiang, P., Hwang, K.S., and Colvin, V.L.: Optical properties of planar colloidal crystals: Dynamical diffraction and the scalar wave approximation. J. Chem. Phys. 111, 345 (1999).Google Scholar
18. Bertone, J., Jiang, P., Hwang, K., Mittleman, D., and Colvin, V.: Thickness Dependence of the Optical Properties of Ordered Silica-Air and Air-Polymer Photonic Crystals. Phys. Rev. Lett. 83, 300 (1999).Google Scholar