Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T14:48:29.048Z Has data issue: false hasContentIssue false

Nonlinear nanocircuitry based on quantum tunneling effects

Published online by Cambridge University Press:  10 December 2015

Pai-Yen Chen*
Affiliation:
Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan 48202, USA
Khai Q. Le
Affiliation:
Department of Electrical Engineering, University of Minnesota, Duluth, Minnesota 55812, USA Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh, Vietnam
Andrea Alù*
Affiliation:
Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78712, USA
*
Address all correspondence to Pai-Yen Chen atpychen@wayne.eduand Andrea Alù atalu@mail.utexas.edu
Address all correspondence to Pai-Yen Chen atpychen@wayne.eduand Andrea Alù atalu@mail.utexas.edu
Get access

Abstract

Metatronics, or metamaterial-inspired optical nanocircuitry, has provided a powerful toolset to tailor and implement modular quasi-static circuit functionalities in the optical regime. So far, these concepts have been mostly limited to linear operations, while many of the relevant operations in integrated circuits require nonlinear responses. In this work, we introduce nonlinear infrared nanocircuit elements exploiting large quantum conductance driven by photon-assisted tunneling and enhanced by hybrid plasmonic nanojunctions. Based on these concepts, we present infrared lumped nanocircuit mixers and switches for second-harmonic generation, and wide-spectrum self-amplitude modulators based on nanorods.

Type
Plasmonics, Photonics, and Metamaterials Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Engheta, N., Salandrino, A., and Alù, A.: Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 95, 095504 (2005).Google Scholar
2. Engheta, N.: Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698 (2007).CrossRefGoogle Scholar
3. Sun, Y., Edwards, B., Alù, A., and Engheta, N.: Experimental realization of optical lumped nanocircuits at infrared wavelengths. Nat. Mater. 11, 208212 (2012).Google Scholar
4. Caglayan, H., Hong, S.H., Edwards, B., Kagan, C.R., and Engheta, N.: Near infrared metatronic nanocircuits by design. Phys. Rev. Lett. 111, 073904 (2013).CrossRefGoogle Scholar
5. Engheta, N.: From radio-frequency circuits to optical nanocircuits. IEEE Microw. Mag. 13, 100113 (2012).CrossRefGoogle Scholar
6. Alù, A. and Engheta, N.: Optical metamaterials based on optical nanocircuits. Proc. IEEE 99, 1669–1681 (2011).Google Scholar
7. Alù, A. and Engheta, N.: Tuning the scattering response of optical nanoantennas with nanocircuit Loads. Nat. Photonics 2, 307 (2008).Google Scholar
8. Schnell, M., García-Etxarri, A., Huber, A.J., Crozier, K., Aizpurua, J., and Hillenbrand, R.: Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photonics 3, 287291 (2009).Google Scholar
9. Liu, N., Wen, F., Zhao, Y., Wang, Y., Nordlander, P., Halas, N.J., and Alù, A.: Individual nanoantennas loaded with three-dimensional optical nanocircuits. Nano Lett. 13, 142147 (2012).Google Scholar
10. Fan, J.A., Wu, C., Bao, K., Bao, J., Bardhan, R., Halas, N.J., Manoharan, V.N., Nordlander, P., Shvets, G., and Capasso, F.: Self-assembled plasmonic nanoparticle clusters. Science 328, 11351138 (2010).Google Scholar
11. Shi, J., Elias, S., Monticone, F., Wu, Y., Ratchford, D., Li, X., and Alù, A.: Modular assembly of optical nanocircuits. Nature Commun. 5, 3896 (2014).Google Scholar
12. Goldsmith, A.: Wireless Communications (Cambridge University Press, New York, 2005).CrossRefGoogle Scholar
13. Chen, P.Y., Farhat, M., and Alù, A.: Bistable and self-tunable negative-index metamaterial at optical frequencies. Phys. Rev. Lett. 106, 105503 (2011).Google Scholar
14. Chen, P.Y. and Alù, A.: Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays. Nano Lett. 11, 5514 (2011).CrossRefGoogle Scholar
15. Chen, P.Y. and Alù, A.: Optical nanoantenna arrays loaded with nonlinear materials. Phys. Rev. B 82, 235405 (2010).Google Scholar
16. Chen, P.Y., Argyropoulos, C., and Alù, A.: Enhanced nonlinearities using plasmonic nanoantennas. Nanophotonics 1, 221 (2012).Google Scholar
17. Chen, P.Y. and Alù, A.: A terahertz photomixer based on plasmonic nanoantennas coupled to a graphene emitter. Nanotechnology 24, 455202 (2013).Google Scholar
18. Chettiar, U.K. and Engheta, N.: Optical frequency mixing through nanoantenna enhanced difference frequency generation: metatronic mixer. Phys. Rev. B 86, 075405 (2012).Google Scholar
19. Chen, P.Y., Argyropoulos, C., D'Aguanno, G., and Alù:, A. Enhanced second-harmonic generation by metasurface nanomixer and nanocavity. ACS Photonics 2, 1000–1006 (2015).Google Scholar
20. Noskov, R.E., Belov, P.A., and Kivshar, Y.S.: Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays. Phys. Rev. Lett. 108, 093901 (2012).Google Scholar
21. Maksymov, I.S., Miroshnichenko, A.E., and Kivshar, Y.S.: Actively tunable bistable optical Yagi-Uda nanoantenna. Opt. Express 20, 89298938 (2012).Google Scholar
22. Kauranen, M. and Zayats, A.V.: Nonlinear plasmonics. Nat. Photonics 6, 737748 (2012).CrossRefGoogle Scholar
23. Harutyunyan, H., Volpe, G., Quidant, R., and Novotny, L.: Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys. Rev. Lett. 108, 217403 (2012).Google Scholar
24. Mahmoud, A.M., Davoyan, A.R., and Engheta, N.: All-passive nonreciprocal metastructure. Nat. Commun. 6, 8359 (2015).Google Scholar
25. Chettiar, U.K. and Engheta, N.: Metatronic transistor amplifier. Phys. Rev. B 92, 165413 (2015).CrossRefGoogle Scholar
26. Zuloaga, J., Prodan, E., and Nordlander, P.: Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887 (2009).CrossRefGoogle Scholar
27. Marinica, D.C., Kazansky, A.K., Nordlander, P., Aizpurua, J., and Borisov, A.G.: Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 12, 1333 (2012).Google Scholar
28. Hajisalem, G., Nezami, M.S., and Gordon, R.: The dark side of plasmonics. Nano Lett. 14, 6651 (2014).Google Scholar
29. Haus, J.W., de Ceglia, D., Vincenti, M.A., and Scalora, M.: Quantum conductivity for metal- insulator-metal nanostructures. J. Opt. Soc. Am. B 31, 259 (2014).CrossRefGoogle Scholar
30. Haus, J.W., de Ceglia, D., Vincenti, M.A., and Scalora, M.: Nonlinear quantum tunneling effects in nano-plasmonic environments. J. Opt. Soc. Am. B 31, A13 (2014).Google Scholar
31. Brongersma, M.L., Halas, N.J., and Nordlander, P.: Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 2534 (2015).Google Scholar
32. Chen, P.Y. and Farhat, M.: Modulatable optical radiators and metasurfaces based on quantum nanoantennas. Phys. Rev. B 91, 035426 (2015).Google Scholar
33. Grover, S. and Moddel, G.: Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J. Photovolt. 1, 78 (2011).Google Scholar
34. Johnson, P.B. and Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4307 (1972).Google Scholar
35. West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., and Boltasseva, A.: Searching for better plasmonic materials. Laser Photonics Rev. 4, 795808 (2010).Google Scholar
36. Refractive index database (http://refractiveindex.info/)Google Scholar
37. CST Microwave Studio (http://www.cst.com)Google Scholar
38. Tien, P.K. and Gordon, J.P.: Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phy. Rev. 129, 647 (1963).Google Scholar
39. Truker, J.R.: Quantum limited detection in tunnel junction mixers. IEEE J. Quantum Electron 15, 1234 (1979).Google Scholar
40. Simmons, J.G.: Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793 (1963).Google Scholar
41. Simmons, J.G.: Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 2581 (1963).Google Scholar
42. Simmons, J.G.: Generalized thermal J-V characteristic for the electric tunnel effect. J. Appl. Phys. 35, 2655 (1964).CrossRefGoogle Scholar
43. Grover, S. and Moddel, G.: Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator tunnel barriers. Solid State Electron. 67, 9499 (2012).Google Scholar
44. Boyd, R.W.: Nonlinear Optics, 3rd ed. (Academic Press, New York, 2008).Google Scholar
45. Argyropoulos, C., Chen, P.Y., D'Aguanno, G., Engheta, N., and Alù, A.: Boosting optical nonlinearities in ε-near-zero plasmonic channels. Phys. Rev. B 85, 045129 (2012).Google Scholar
46. Argyropoulos, C., Chen, P.Y., Monticone, F., D'Aguanno, G., and Alù, A.: Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys. Rev. Lett. 108, 263905 (2012).CrossRefGoogle Scholar
Supplementary material: PDF

Chen supplementary material S1

Chen supplementary material

Download Chen supplementary material S1(PDF)
PDF 340.4 KB