Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T01:54:03.143Z Has data issue: false hasContentIssue false

Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics

Published online by Cambridge University Press:  21 December 2015

Debasish Mohanty*
Affiliation:
Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
Jianlin Li
Affiliation:
Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
Shrikant C. Nagpure
Affiliation:
Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
David L. Wood III
Affiliation:
Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; and Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
Claus Daniel
Affiliation:
Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; and Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
*
a) Address all correspondence to Debasish Mohanty at mohantyd@ornl.gov
Get access

Abstract

Materials diagnostic techniques are the principal tools used in the development of low-cost, high-performance electrodes for next-generation lithium-based energy storage technologies. This review highlights the importance of materials diagnostic techniques in unraveling the structure and the structural degradation mechanisms in high-voltage, high-capacity oxides that have the potential to be implemented in high-energy-density lithium-ion batteries for transportation that can use renewable energy and is less-polluting than today.

The rise in CO2 concentration in the earth’s atmosphere due to the use of petroleum products in vehicles and the dramatic increase in the cost of gasoline demand the replacement of current internal combustion engines in our vehicles with environmentally friendly, carbon free systems. Therefore, vehicles powered fully/partially by electricity are being introduced into today’s transportation fleet. As power requirements in all-electric vehicles become more demanding, lithium-ion battery (LiB) technology is now the potential candidate to provide higher energy density. Discovery of layered high-voltage lithium-manganese–rich (HV-LMR) oxides has provided a new direction toward developing high-energy-density LiBs because of their ability to deliver high capacity (∼250 mA h/g) and to be operated at high operating voltage (∼4.7 V). Unfortunately, practical use of HV-LMR electrodes is not viable because of structural changes in the host oxide during operation that can lead to fundamental and practical issues. This article provides the current understanding on the structure and structural degradation pathways in HV-LMR oxides, and manifests the importance of different materials diagnostic tools to unraveling the key mechanism(s). The fundamental insights reported, might become the tools to manipulate the chemical and/or structural aspects of HV-LMR oxides for low cost, high-energy-density LiB applications.

Type
Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

References

REFERENCES

Lawrence Livermore National Library: Energy Flow Charts (2014). Available at: https://flowcharts.llnl.gov/ (accessed October 2015).Google Scholar
US Energy Information Administration: (2015). Available at: http://www.eia.gov/ (accessed October 2015).Google Scholar
Young, T.: A Course of Lectures on Natural Philosophy and the Mechanical Arts (Taylor and Walton, London, 1807).Google Scholar
Lewis, N.S.: Powering the Planet. Eng. Sci. 2, 13 (2007).Google Scholar
Lewis, N.S.: Powering the Planet. MRS Bull. 32, 808 (2007).Google Scholar
Baskin, N.: Better Place Unrealized Dream (2013). Available at: https://www.weizmann.ac.il/AERI/sites/AERI/files/electric_car.pptx (accessed October 2015).Google Scholar
Chu, S. and Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294 (2012).Google Scholar
Zhang, S.S.: Status, opportunities, and challenges of electrochemical energy storage. Front. Energy Res. 1, 1 (2013).Google Scholar
Danielson, D.T.: Everywhere Grand Challenge Blue Print (US Department of Energy, 2013). Available at: http://www1.eere.energy.gov/vehiclesandfuels/electric_vehicles/pdfs/eveverywhere_blueprint.pdf (accessed October 2015).Google Scholar
Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).Google Scholar
Howell, D.: EV Everywhere Grand Challenge-Battery Obstacles and Opportunities (US Department of Energy, Washington DC, 2012).Google Scholar
Mohanty, D., Li, J., Born, R., Maxey, L.C., Dinwiddie, R.B., Daniel, C. III, and Wood, D.L.: Non-destructive evaluation of slot-die-coated lithium secondary battery electrodes by in-line laser caliper and IR thermography methods. Anal. Methods 6, 674 (2014).Google Scholar
Wood, D.L. III, Li, J., and Daniel, C.: Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 275, 234 (2015).CrossRefGoogle Scholar
Li, J., Daniel, C., and Wood, D.: Materials processing for lithium-ion batteries. J. Power Sources 196(5), 2452 (2011).Google Scholar
Tarascon, J-M. and Armand, M.: Building better batteries. Nature 451, 652 (2008).Google Scholar
Oak Ridge National Laboratory: Battery Fatigue (2013). Available at: https://www.youtube.com/watch?v=e7ZpvyJhMHM&feature=youtu.be (accessed October 2015).Google Scholar
Daniel, C., Mohanty, D., Li, J. III, and Wood, D.L.: Cathode materials review. In AIP Conference Proceedings. 1597, Vol. 26, Freiberg, Germany, 2014; p. 26.Google Scholar
Kraytsberg, A. and Eli, Y.E.: Higher, stronger, better... A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2, 922 (2012).Google Scholar
Whittingham, M.S.: Electrical energy storage and intercalation chemistry. Science 192, 1126 (1976).Google Scholar
Manthiram, A. and Muraliganth, T.: Lithium intercalation cathode materials for lithium-ion batteries. In Handbook of Battery Materials, 2nd ed., Daniel, C. and Besenhard, J.O. eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011.Google Scholar
Mizushima, K., Jones, P.C., Wiesman, P.J., and Goodenough, J.B.: LixCoO2 (0<x<−1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783 (1980).Google Scholar
Goodenough, J.B., Mizushima, K., and Takeda, T.: J. Appl. Phys. 19, 305 (1983).Google Scholar
National Academy of Engineering: Draper Prize Winners: Dr. Rachid Yazami (2014). Available at: http://www.nae.edu/Projects/Awards/DraperPrize/DraperWinners/105792/105813.aspx (accessed October 2015). Google Scholar
Julien, C.M., Mauger, A., Zaghi, K., and Groult, H.: Comparative issues of cathode materials for Li-ion batteries. Inorganics 2, 132 (2014).Google Scholar
Mohanty, D., Huq, A., Andrew Payzant, E., Sefat, A.S., Li, J., Abraham, D.P., Wood, D.L. III, and Daniel, C.: Neutron diffraction and magnetic susceptibility studies on a high-voltage Li1.2Mn0.55Ni0.15Co0.10O2 lithium ion battery cathode: Insight into the crystal structure. Chem. Mater. 25, 40644070 (2013).Google Scholar
Manthiram, A.: Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2, 176 (2011).Google Scholar
Huang, B., Jang, Y-I., Chiang, Y-M., and Sadoway, D.R.: Electrochemical evaluation of LiCoO2 synthesized by decomposition and intercalation of hydroxides for lithium-ion battery applications. J. Appl. Electrochem. 28, 1365 (1998).CrossRefGoogle Scholar
Wang, L-F., Ou, C-C., Striebel, K.A., and Chenc, J-S.: Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 Cells. J. Electrochem. Soc. 150, A905 (2003).Google Scholar
Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).Google Scholar
Yu, H., Shikawa, R., So, Y-G., Shibata, N., Kudo, T., Zhou, H., and Ikuhara, Y.: Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew. Chem., Int. Ed. 52, 5969.Google Scholar
Lu, Z.H., MacNeil, D.D., and Dahn, J.R.: Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)] O2 for lithium-ion batteries. Electrochem. Solid-State Lett. 4, A191 (2001).Google Scholar
Thackeray, M.M., Johnson, C.S., Vaughey, J.T., Li, N., and Hackney, S.A.: Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257 (2005).Google Scholar
Sathiya, M., Rousse, G., Ramesha, K., Laisa, C.P., Vezin, H., Sougrati, M.T., Doublet, M-L., Foix, D., Gonbeau, D., Walker, W., Prakash, A.S., Ben Hassine, M., Dupont, L., and Tarascon, J-M.: Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827 (2013).Google Scholar
Xu, B., Qian, D., Wang, Z., and Meng, Y.S.: Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng., R 73, 51 (2012).Google Scholar
Ohzuku, T., Ueda, A., and Nagayama, M.: Electrochemistry and structural chemistry of LiNiO2 $R\bar 3m$ for 4 volt secondary lithium cells. J. Electrochem. Soc. 140, 1862 (1993).Google Scholar
Besenhard, O.J.: Handbook of Battery Materials (Wiley-VCH, New York, 1999).Google Scholar
Hirano, A., Kanno, R., Kawamoto, Y., Yamaura, T.Y.K., Takano, M., Ohyama, K., Ohashi, M., and Yamaguchi, Y.: Relationship between non-stoichiometry and physical properties in LiNiO2 . Solid State Ionics 78, 123 (1995).CrossRefGoogle Scholar
Ohzuku, T. and Msakimura, Y.: Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem. Lett. 30, 744 (2001).Google Scholar
Yabuuchi, N., Kumar, S., Li, H.H., Kim, Y.T., and Shao-Horn, Y.: Changes in the crystal structure and electrochemical properties of Li x Ni0.5Mn0.5O2 during electrochemical cycling to high voltages. J. Electrochem. Soc. 154, A566 (2007).Google Scholar
Ohzuku, T. and Makimura, Y.: Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 30, 642 (2001).Google Scholar
Kang, K., Shirley Meng, Y., Bréger, J., Grey, C.P., and Ceder, G.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977 (2006).Google Scholar
Nazri, G.A. and Pistoia, G. eds.: Lithium Batteries Science and Technology (Springer, New York, USA, 2009).Google Scholar
Johnson, C.S., Li, N., Lefief, C., Vaughey, J.T., and Thackeray, M.M.: Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem. Mater. 20, 6095 (2008).CrossRefGoogle Scholar
McCalla, E., Lowartz, C.M., Brown, C.R., and Dahn, J.R.: Formation of layered–layered composites in the Li–Co–Mn oxide pseudoternary system during slow cooling. Chem. Mater. 25, 912 (2013).Google Scholar
Jiang, M., Key, B., Meng, Y.S., and Grey, C.P.: Electrochemical and structural study of the layered, “Li-excess” lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2 . Chem. Mater. 21, 2733 (2009).Google Scholar
Meng, Y.S., Ceder, G., Grey, C.P., Yoon, W-S., Jiang, M., Bréger, J., and Shao-Horn, Y.: Cation ordering in layered O3 Li[NixLi1/3−2x/3Mn2/3−x/3]O2 (0 ≤ x ≤ 1/2) compounds. Chem. Mater. 17, 2386 (2005).Google Scholar
Lu, W., Wu, Q., and Dees, D.: Electrochemical characterization of lithium and manganese rich composite material for lithium ion batteries. J. Electrochem. Soc. 160, A950 (2013).Google Scholar
Gallagher, K.G., Croy, J.R., Balasubramanian, M., Bettge, M., Abraham, D.P., Burrell, A.K., and Thackeray, M.M.: Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes. Electrochem. Commun. 33, 96 (2013).Google Scholar
Bettge, M., Li, Y., Gallagher, K., Zhu, Y., Wua, Q., Lu, W., Bloom, I., and Abraham, D.P.: Voltage fade of layered oxides: Its measurement and impact on energy density. J. Electrochem. Soc. 160, A2046 (2014).Google Scholar
Deng, Z.D. and Manthiram, A.: Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. J. Phys. Chem. 115, 7097 (2011).Google Scholar
Mohanty, D., Sefat, A.S., Kalnaus, S., Li, J., Meisner, R.A., Abraham, D.P., Payzant, E.A., Wood, D.L. III, and Daniel, C.: Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J. Mater. Chem. A 1, 6249 (2013).Google Scholar
Armstrong, A.R., Holzapfel, M., Novak, P., Johnson, C.S., Kang, S.H., Thackeray, M.M., and Bruce, P.G.: Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 . J. Am. Chem. Soc. 128, 8694 (2006).Google Scholar
Yu, H. and Zhou, H.: High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 4, 1268 (2013).Google Scholar
Li, L., Seng Lee, K., and Lu, L.: Li-rich layer-structured cathode materials for high energy Li-ion batteries. Funct. Mater. Lett. 7, 1430002 (2014).Google Scholar
Croy, J.R., Abouimrane, A., and Zhang, Z.: Next-generation lithium-ion batteries: The promise of near-term advancements. Mater. Res. Bull. 39, 407 (2014).Google Scholar
He, P., Yu, H., Li, D., and Zhou, H.: Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J. Mater. Chem. A 22, 3680 (2012).Google Scholar
Hu, M., Pang, X., and Zhou, Z.: Recent progress in high-voltage lithium ion batteries. J. Power Sources 237, 229 (2013).Google Scholar
Zolotoyabko, E.: Basic Concepts of X-Ray Diffraction (Wiley-VCH, Germany, 2014). ISBN: 978-3-527-33561-9.Google Scholar
Shioya, T.: R&D Report, “SUMITOMO KAGAKU”, Vol. 2011, 1 (2011).Google Scholar
Whitfield, P.S., Davidson, I.J., Stephens, P.W., Cranswick, L.M.D., and Swainson, I.P.: Untangling cation ordering in complex lithium battery cathode materials—Simultaneous refinement of x-ray, neutron and resonant scattering data. Z. Kristallogr. Suppl. 26, 483 (2007).Google Scholar
Bennigton, S.M.: The use of neutron scattering in the study of ceramics. J. Mater. Sci. 39, 6757 (2004).Google Scholar
Williams, D.V. and Carter, C.B.: Transmission Electron Microscopy (Springer, New York, 1996).Google Scholar
Gracia, B., Farcy, J., and Pereira-Ramos, J.P.: Electrochemical properties of low temperature crystallized LiCoO2 . J. Electrochem. Soc. 144, 1179 (1997).CrossRefGoogle Scholar
Gummow, R.J., Thackeray, M.M., David, W.I.F., and Hull, S.: Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C. Mater. Res. Bull. 27, 327 (1992).Google Scholar
Rossen, E., Reimers, J.N., and Dahn, J.R.: Synthesis and electrochemistry of spinel LT-LiCoO2 . Solid State Ionics 62, 53 (1993).Google Scholar
Koga, H., Croguennec, L., Mannessiez, P., Menetrier, M., Weill, F., Bourgeois, L., Duttine, M., Suard, E., and Delmas, C.: Li1.20Mn0.54Co0.13Ni0.13O2 with different particle sizes as attractive positive electrode materials for lithium-ion batteries: Insights into their structure. J. Phys. Chem. 116, 13497 (2012).Google Scholar
Jarvis, K.A., Deng, Z., Allard, L.F., Manthiram, A., and Ferreira, P.J.: Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution. Chem. Mater. 23, 3614 (2011).Google Scholar
Amalraj, F., Kovacheva, D., Talianker, M., Zeiri, L., Grinblat, J., Leifer, N., Goobes, G., Markovsky, B., and Aurbach, D.: Synthesis of integrated cathode materials xLi2MnO3 (1 − x)LiMn1/3Ni1/3Co1/3O2 (x=0.3, 0.5, 0.7) and studies of their electrochemical behavior. J. Electrochem. Soc. 157, A1121 (2010).Google Scholar
Bregera, J., Jianga, M., Dupre, N., Meng, Y.S., Horn, Y.S., Cederc, G., and Grey, C.P.: High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution. J. Solid State Chem. 178, 2578 (2005).Google Scholar
Ohzuku, T., Nagayama, M., Tsuji, K., and Ariyoshi, K.: High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: Toward rechargeable capacity more than 300 mA h g−1 . J. Mater. Chem. A 21, 10179 (2011).Google Scholar
Wen, J.G., Bareno, J., Lei, C.H., Kang, S.H., Balasubramanian, M., Petrov, I., and Abraham, D.P.: Analytical electron microscopy of Li1.2Co0.4Mn0.4O2 for lithium-ion batteries. Solid State Ionics 182, 98 (2011).Google Scholar
Bareño, J., Balasubramanian, M., Kang, S.H., Wen, J.G., Lei, C.H., Pol, S.V., Petrov, I., and Abraham, D.P.: Long-range and local structure in the layered oxide Li1.2Co0.4Mn0.4O2 . Chem. Mater. 23, 2039 (2011).Google Scholar
Mohanty, D., Kalnaus, S., Meisner, R.A., Rhodes, K.J., Li, J., Payzant, E.A., Wood, D.L. III, and Daniel, C.: Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J. Power Sources 229, 239 (2013).Google Scholar
Whitfield, P.S., Davidson, I.J., Cranswick, L.M.D., Swainson, I.P., and Stephens, P.W.: Investigation of possible superstructure and cation disorder in the lithium battery cathode material LiMn1/3Ni1/3Co1/3O2 using neutron and anomalous dispersion powder diffraction. Solid State Ionics 176, 463 (2005).Google Scholar
Liu, H., Fell, C.R., An, K., Cai, L., and Meng, Y.S.: In-situ neutron diffraction study of the xLi2MnO3·(1 − x)LiMO2 (x = 0, 0.5; M = Ni, Mn, Co) layered oxide compounds during electrochemical cycling. J. Power Sources 240, 772 (2013).Google Scholar
Mohanty, D., Sefat, A.S., Li, J., Meisner, R.A., Rondinone, A.J., Payzant, E.A., Abraham, D.P., Wood, D.L. III, and Daniel, C.: Correlating cation ordering and voltage fade in a lithium–manganese-rich lithium-ion battery cathode oxide: A joint magnetic susceptibility and TEM study. Phys. Chem. Chem. Phys. 15, 19496 (2013).Google Scholar
Yu, S.H., Yoon, T., Mun, J., Park, S., Kang, Y.S., Park, J.H., Oh, S.M., and Sung, Y.E.: Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium ion batteries. J. Mater. Chem. A 1, 2833 (2013).Google Scholar
Koga, H., Croguennec, L., Menetrier, M., Douhil, K., Belin, S., Bourgeois, L., Suard, E., and Weill, F.: Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2 . J. Electrochem. Soc. 160, A786 (2013).Google Scholar
Li, Y., Bettge, M., Polzin, B., Zhu, Y., Balasubramanian, M., and Abraham, D.P.: Understanding long-term cycling performance of Li1.2Ni0.15Mn0.55Co0.1O2–graphite lithium-ion cells. J. Electrochem. Soc. 160, A3006 (2013).Google Scholar
Ito, A., Shoda, K., Sato, Y., Hatano, M., Horie, H., and Ohsawa, Y.: Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 upon the first charge and discharge. J. Power Sources 196, 4785 (2011).Google Scholar
Mohanty, D., Li, J., Abraham, D.P., Huq, A., Andrew Payzant, E., Wood, D.L. III, and Daniel, C.: Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: Origin of the tetrahedral cations for spinel conversion. Chem. Mater. 26, 6272 (2014).Google Scholar
Heimendahl, M.V.: Electron Microscopy of Materials (Academic press, New York, 1980).Google Scholar
Amalraj, F., Talianker, M., Markovsky, B., Sharon, D., Burlaka, L., Shafir, G., Zinigrad, E., Haik, O., Aurbach, D., Lampert, J., Schulz-Dobrick, M., and Garsuchc, A.: Study of the lithium-rich integrated compound xLi2MnO3·(1 − x)LiMO2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells. J. Electrochem. Soc. 160, A324 (2013).Google Scholar
Soo Kim, J., Johnson, C.S., Vaughey, J.T., Thackeray, M.M., Hackney, S.A., Yoon, W., and Grey, C.P.: Electrochemical and structural properties of xLi2M‘O3·(1 − x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M‘ = Ti, Mn, Zr; 0 ≤ x≤ 0.3). Chem. Mater. 16, 1996 (2004).Google Scholar
Gu, M., Genc, A., Belharouak, I., Wang, D., Amine, K., Thevuthasan, S., Baer, D.R., Zhang, J-G., Browning, N.D., Liu, J., and Wang, C.: Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ion batteries. Chem. Mater. 25, 2319 (2013).Google Scholar
Song, B., Liu, Z., On Lai, M., and Lu, L.: Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. Phys. Chem. Chem. Phys. 14, 12875 (2012).Google Scholar
Gu, M., Belharouak, I., Zheng, J., Wu, H., Xiao, J., Genc, A., Amine, K., Thevuthasan, S., Baer, D.R., Zhang, J-G., Browning, N.D., Liu, J., and Wang, C.: Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760 (2013).Google Scholar
Croy, J.R., Balasubramanian, M., Kim, D., Kang, S.H., and Thackeray, M.M.: Designing high-capacity, lithium-ion cathodes using X-ray absorption spectroscopy. Chem. Mater. 23, 5414 (2011).Google Scholar
Koga, H., Croguennec, L., Ménétrier, M., Mannessiez, P., Weill, F., Delmas, C., and Belin, S.: Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li ion batteries. J. Phys. Chem. C 118, 5700 (2014).Google Scholar
Croy, J.R., Gallagher, K.G., Balasubramanian, M., Long, B.R., and Thackeray, M.M.: Quantifying Hysteresis and voltage fade in xLi2MnO3·(1 − x)LiMn0.5Ni0.5O2 electrodes as a function of Li2MnO3 content. J. Electrochem. Soc. 161, A318 (2014).CrossRefGoogle Scholar
Yu, X., Lyu, Y., Gu, L., Wu, H., Bak, S.M., Zhou, Y., Amine, K., Ehrlich, S.N., Li, H., Nam, K-W., and Yang, X-Q.: Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 4, 1300950 (2014).CrossRefGoogle Scholar
Nurullah Ates, M., Mukerjee, S., and Abraham, K.M.: A search for the optimum lithium rich layered metal oxide cathode material for Li-ion batteries. J. Electrochem. Soc. 161, A355 (2014).Google Scholar
Ito, A., Sato, Y., Sanada, T., Hatano, M., Horie, H., and Ohsawa, Y.: In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 . J. Power Sources 196, 6828 (2011).CrossRefGoogle Scholar
Wang, Z.L., Yin, J.S., and Jiang, Y.D.: EELS analysis of cation valence states and oxygen vacancies in magnetic oxides. Micron 31, 571 (2000).Google Scholar
Xu, B., Fell, C.R., Chi, M., and Meng, Y.S.: Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 4, 2223 (2011).Google Scholar
Grey, C.P. and Dupré, N.: NMR studies of cathode materials for lithium-ion rechargeable batteries. Chem. Rev. 104, 4493 (2004).Google Scholar
Chernova, N.A., Nolis, G.M., Omenya, F.O., Zhou, H., Lia, Z., and Whittingham, M.S.: What can we learn about battery materials from their magnetic properties? J. Mater. Chem. 21, 9865 (2011).Google Scholar
Key, B.: Solid State NMR Studies of Li-Rich NMC Cathodes: Investigating Structure Change and Its Effect on Voltage Fade Phenomenon, US DOE Annual Merit Review Meeting, Washington, DC, 2014.Google Scholar
Fell, C.R., Chi, M., Meng, Y.S., and Jones, J.L.: In situ X-ray diffraction study of the lithium excess layered oxide compound Li[Li0.2Ni0.2Mn0.6]O2 during electrochemical cycling. Solid State Ionics 207, 44 (2012).Google Scholar
Lu, Z. and Dahn, J.R.: Understanding the anomalous capacity of Li/Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 cells using In Situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815 (2002).Google Scholar
Boulineau, A., Simonin, L., Colin, J-F., Bourbon, C., and Patoux, S.: Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy. Nano Lett. 13, 3857 (2013).Google Scholar
Dixit, H., Zhou, W., Idrobo, J-C., Nanda, J., and Cooper, V.R.: Facet-dependent disorder in pristine high-voltage lithium–manganese-rich cathode material. ACS Nano 8, 12710 (2014).Google Scholar
Fell, C.R., Qian, D., Carroll, K.J., Chi, M., Jones, J.L., and Meng, Y.S.: Correlation between oxygen vacancy, microstrain, and cation distribution in lithium-excess layered oxides during the first electrochemical cycle. Chem. Mater. 25, 1621 (2013).Google Scholar
Carroll, K.J., Qian, D., Fell, C.R., Calvin, S., Veith, G.M., Chi, M., Baggetto, L., and Meng, Y.S.: Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2 . Phys. Chem. Chem. Phys. 15, 11128 (2013).Google Scholar
Sathiya, M., Abakumov, A.M., Foix, D., Rousse, G., Ramesha, K., Saubanère, M., Doublet, M.L., Vezin, H., Laisa, C.P., Prakash, A.S., Gonbeau, D., VanTendeloo, G., and Tarascon, J-M.: Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230 (2014).Google Scholar
Wang, Y., Bie, X., Nikolowski, K., Ehrenberg, H., Du, F., Hinterstein, M., Wang, C., Chen, G., and Wei, Y.: Relationships between structural changes and electrochemical kinetics of Li-excess Li1.13Ni0.3Mn0.57O2 during the first charge. J. Phys. Chem. C 117, 3279 (2013).Google Scholar
Simonin, L., Colin, J.F., Ranieri, V., Canevet, E., Martin, J.F., Bourbon, C., Baehtz, C., Strobel, P., Daniel, L., and Patoux, S.: In situ investigations of a Li-rich Mn–Ni layered oxide for Li-ion batteries. J. Mater. Chem. A 22, 11316 (2012).Google Scholar
Heng Shen, C., Huang, L., Lin, Z., Shen, S-Y., Wang, Q., Su, H., Fu, F., and Zheng, X-M.: Kinetics and structural changes of Li-rich layered oxide 0.5Li2MnO3·0.5LiNi0.292Co0.375Mn0.333O2 material investigated by a novel technique combining in situ XRD and a multipotential step. ACS Appl. Mater. Interfaces 6, 13271 (2014).CrossRefGoogle Scholar
Shen, C.H., Wang, Q., Fu, F., Huang, L., Lin, Z., Shen, S.Y., Su, H., Zheng, X.M., Xu, B.B., Li, J.T., and Sun, S.G.: Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge–discharge cycle: In situ XRD characterization. ACS Appl. Mater. Interfaces 6, 5516 (2014).Google Scholar
Hy, S., Felix, F., Rick, J., Su, W.N., and Hwang, B.J.: Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[Ni x Li(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤0.5). J. Am. Chem. Soc. 136, 999 (2013).Google Scholar
Ohzuku, T., Nagayama, M., Tsuji, K., and Ariyoshi, K.: High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1 . J. Mater. Chem. 21, 10188 (2011).Google Scholar
Zheng, J., Gu, M., Xiao, J., Zuo, P., Wang, C., and Zhang, J-G.: Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 13, 38243830 (2013).Google Scholar
Qian, D., Xu, B., Chi, M., and Meng, Y.S.: Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys. Chem. Chem. Phys. 15, 14664 (2014).Google Scholar
Verde, M.G., Liu, H., Carroll, K.J., Baggetto, L., Veith, G.M., and Meng, Y.S.: Effect of morphology and manganese valence on the voltage fade and capacity retention of Li[Li2/12Ni3/12Mn7/12]O2 . ACS Appl. Mater. Interfaces 6, 18868 (2014).Google Scholar
Nurullah Ates, M., Jia, Q., Shah, A., Busnaina, A., Mukerjee, S., and Abrahama, K.M.: Mitigation of layered to spinel conversion of a Li-rich layered metal oxide cathode material for Li-ion batteries. J. Electrochem. Soc. 161, A290A301 (2014).Google Scholar
Li, Q., Li, G., Fu, C., Luo, D., Fan, J., and Li, L.: K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 10330 (2014).Google Scholar
Knight, J.C., Nandakumar, P., Kan, W.H., and Manthiram, A.: Effect of Ru substitution on the first charge–discharge cycle of lithium-rich layered oxides. J. Mater. Chem. A 3, 2006 (2015).Google Scholar
Yang, X., Wang, D., Yu, R., Bai, Y., Shu, H., Ge, L., Guo, H., Wei, Q., Liu, L., and Wang, X.: Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition. J. Mater. Chem. A 2, 3899 (2014).Google Scholar
Lee, E.S. and Manthiram, A.: Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay. J. Mater. Chem. A 2, 3932 (2014).Google Scholar
Hautier, Geoffroy, Jain, Anubhav, Chen, Hailong, Moore, Charles, Ping Ong, Shyue and Ceder, Gerbrand, Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations; Journal of Materials Chemistry, 21, 17147 (2011).Google Scholar
Thackeray, Michael M., Wolverton, Christopher and Isaacs, Eric D., Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries; Energy and Environmental Science 5, 7854 (2012).Google Scholar