Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T05:03:42.868Z Has data issue: false hasContentIssue false

Effects of Long-Term Aging in Arsenical Copper Alloys

Published online by Cambridge University Press:  23 October 2015

Filipa Pereira*
Affiliation:
CENIMAT/I3N, Departamento de Ciências dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela LRS, Portugal
Rui J. C. Silva
Affiliation:
CENIMAT/I3N, Departamento de Ciências dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
António M. Monge Soares
Affiliation:
Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela LRS, Portugal Museu Arqueológico do Carmo, Associação dos Arqueólogos Portugueses, 1200-092 Lisboa, Portugal
Maria F. Araújo
Affiliation:
Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela LRS, Portugal
Maria J. Oliveira
Affiliation:
Laboratório José de Figueiredo, Rua das Janelas Verdes 37, 1249-018 Lisboa, Portugal
Rui M. S. Martins
Affiliation:
CENIMAT/I3N, Departamento de Ciências dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal LATR/IST/CTN - Campus Tecnológico e Nuclear, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela LRS, Portugal
Norberth Schell
Affiliation:
Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
*
*Corresponding author. fpsp@campus.fct.unl.pt
Get access

Abstract

Archaeological materials present unique records on natural processes allowing the study of long-term material behaviors such as structural modifications and degradation mechanisms. The present work is focused on the chemical and microstructural characterization of four prehistoric arsenical copper artifacts. These artifacts were characterized by micro-energy dispersive X-ray fluorescence spectrometry, optical microscopy, scanning electron microscopy with X-ray microanalysis, micro-X-ray diffraction and synchrotron radiation micro-X-ray diffraction. Cu3As is the expected intermetallic arsenide in arsenical copper alloys, reported in the literature as exhibiting a hexagonal crystallographic structure. However, a cubic Cu3As phase was identified by X-ray diffraction in all of our analyzed archaeological artifacts, while the hexagonal Cu3As phase was clearly identified only in the artifact with higher arsenic content. Occurrence of the cubic arsenide in these particular objects, suggests that it was precipitated due to long-term aging at room temperature, which points to the need of a redefinition of the Cu-As equilibrium phase constitution. These results highlight the importance of understanding the impact of structural aging for the assessment of original properties of archaeological arsenical copper artifacts, such as hardness or color.

Type
Materials Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bengough, G.D. & Hill, B.P. (1910). The properties and constitution of copper-arsenic alloys. J Inst Met 3, 3471.Google Scholar
Budd, P. (1991). Eneolithic arsenical copper: heat treatment and the metallographic interpretation of manufacturing processes. In Proceedings of Archaeometry (vol. 90 Pernika, E. & Wagner, G.A. (Eds.), pp. 3544). Basel: Birkhäuser.Google Scholar
Budd, P. & Ottaway, B.S. (1995). Eneolithic arsenical copper: chance or choice? In International Symposium, Ancient Mining and Metallurgy in Southeast Europe, Jovanovic, B. (Ed.), pp. 95102. Belgrade: Archaeological Institute.Google Scholar
Dewalens, J., Heerman, L. & Simaeys, L.V. (1951). The codeposition of copper and arsenic from H2SO4‐CuSO4 ‐ As2O3 solutions, electrochemical formation of copper arsenides. J Electrochem Soc 122(4), 477482.CrossRefGoogle Scholar
Giumlia-Mair, A. (2008). The metal of the moon goddess. Surface Engineering 24(2), 110117.CrossRefGoogle Scholar
Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N. & Häusermann, D. (1996). Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res 14, 235248.CrossRefGoogle Scholar
Hawkins, D.T. (1973). Metals Handbook, Metallography, Structures and Phase Diagrams, 8th ed., vol. 8 Materials Park, OH: American Society for Metals. 265pp.Google Scholar
Heyding, R.D. & Despault, G.J.G. (1960). The copper/arsenic system and the copper arsenide minerals. Can J Chem 38(12), 24772481.CrossRefGoogle Scholar
Iglesias, J.E. & Nowacki, W. (1977). Refinement of the crystal structure of α domeykite, struture related to the A15 type. Z Kristallogr 145, 334345.CrossRefGoogle Scholar
McKerrell, H. & Tylecote, R.F. (1972). The working of copper-arsenic alloys in the Early Bronze Age and the effect on the determination of provenance. Proc Prehist Soc 38, 209218.CrossRefGoogle Scholar
Naud, J. & Priest, P. (1972). Contributions to the study of the copper-arsenic system. Mater Res Bull 7, 783792 (in French).CrossRefGoogle Scholar
Northover, J.P. (1989). Properties and use of arsenic-copper alloys. In Old World Archaeometallurgy (Der Anschnitt, Beiheft 7, Hauptmann, A., Pernicka, E. & Wagner, G.A. (Eds.), pp. 111118). Bochum: Deutsches Bergbaumuseum, B.Google Scholar
Okamoto, H. (1991). Revaluation of thermodynamic models for phase diagram. J Phase Equil 12, 623643.CrossRefGoogle Scholar
Padera, K. (1952). Revision of the domeykite-algodonite group. Acad Tcheque Sci Bull Int Classe Sci, Math, Nat, Med 52, 5368.Google Scholar
Pei, B., Björkman, B., Jansson, B. & Sundman, B. (1994). Thermodynamic assessment of the Cu-As system using an ionic two-sublattice model for the liquid phase. Z Kristallogr 85(3), 178184.Google Scholar
Pereira, F., Silva, R.J.C., Soares, A.M.M. & Araújo, M.F. (2013). The role of arsenic in Chalcolithic copper artefacts – insights from Vila Nova de São Pedro (Portugal). J Archaeol Sci 40, 20452056.CrossRefGoogle Scholar
Predel, B. (2006). As-Cu (Arsenic – Copper), Ac-Ag… Au-Zr, 12A, Subvolume IV/5A In Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Madelung, O. (Ed.), 14. Landolt-Börnstein, Berlin: Springer.Google Scholar
Ravič, I.G. & Ryndina, N.V. (1984). Izučenie svojstv I mikrostrukturny splavov med’-myš’jak v svjazi s ich ispol’zovaniem v drevnosti. (On the investigation of the properties and microstructure of the copper-arsenic alloys in conjunction with their use in antiquity) Chudožestvennoe nasledie (Art Heritage) 39(9), 114124.Google Scholar
Schell, N., King, A., Beckmann, F., Fischer, T., Müller, M. & Schreyer, A. (2014). The high energy materials science beamline (HEMS) at PETRA III. Mater Sci Forum 772, 5761.CrossRefGoogle Scholar
Scott, D.A. (1991). The microstructure of ancient metals. In Metallography and Microstructure of Ancient and Historic Metals, Averkieff, I. (Ed.), pp. 2. Oxford University Press, USA: The Getty Conservation Institute.Google Scholar
Skinner, B.J. & Luce, F.D. (1971). Stabilities and compositions of α-domeykite and algodonite. Econ Geol 66, 133139.CrossRefGoogle Scholar
Smithells, C.J. (1962). Metal Reference Book, 3rd ed., vol. 1 London, UK: Butterworths.Google Scholar
Soares, A.M.M. (2005). A metalurgia de Vila Nova de São Pedro. Algumas reflexões. In Construindo a memória (As colecções do Museu Arqueológico do Carmo, Arnaud, M. & Fernandes, C.V. (Eds.), pp. 179188). Lisboa: Associação dos Arqueólogos Portugueses, PT.Google Scholar
Subramanian, P.R. & Laughlin, D.E. (1998). The As-Cu (Arsenic-Copper) system. Bull Alloy Phase Diagr 9(5), 605617.CrossRefGoogle Scholar
Teppo, O. & Taskinen, P. (1991). An assessment of the thermodynamic properties of arsenic-copper alloys. Scand J Metall 20, 141148.Google Scholar
Valério, P., Araújo, M.F. & Canha, A. (2007). EDXRF and micro-EDXRF studies of Late Bronze Age metallurgical productions from Canedotes (Portugal). Nucl Instrum Meth B 263, 477482.CrossRefGoogle Scholar
Valério, P., Soares, A.M.M., Maria Araújo, M.F., Silva, R.J.C. & Baptista, L. (2015). Middle bronze age arsenical copper alloys in southern Portugal. Archaeometry, doi:10.1111/arcm.12212 (in press).CrossRefGoogle Scholar
Valério, P., Soares, A.M.M., Maria Araújo, M.F., Silva, R.J.C., Porfírio, E. & Serra, M. (2014). Arsenical copper and bronze in Middle Bronze Age burial sites of southern Portugal: the first bronzes in Southwestern Iberia. J Archaeo Sci 42, 6880.CrossRefGoogle Scholar