Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-19T08:26:42.868Z Has data issue: false hasContentIssue false

Climate sensitivity

Published online by Cambridge University Press:  08 December 2015

Roy Thompson*
Affiliation:
School of GeoSciences, Crew Building, King's Buildings, The University of Edinburgh, Edinburgh EH9 3JN

Abstract

Earth has been habitable through most of its history, but the anthropogenically mediated greenhouse effect, if sufficiently strong, can threaten Earth's long-standing equability. This paper's main aim is to determine the strength of the anthropogenic greenhouse effect (the climate sensitivity) from observational data and basic physics alone, without recourse to the parameterisations of earth-system models and their inevitable uncertainties. A key finding is that the sensitivity can be constrained by harmonising historical records of land and ocean temperatures with observations of potential climate-change drivers in a non-steady state, energy-balance equation via a least-squares optimisation. The global temperature increase, for a CO2 doubling, is found to lie (95 % confidence limits) between 3.0oC and 6.3oC, with a best estimate of +4oC. Under a business-as-usual scenario, which assumes that there will be no significant change in people's attitudes and priorities, Earth's surface temperature is forecast to rise by 7.9oC over the land, and by 3.6oC over the oceans, by the year 2100. Global temperature rise has slowed in the last decade, leading some to question climate predictions of substantial 21st-Century warming. A formal runs test, however, shows that the recent slowdown is part of the normal behaviour of the climate system.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

8. References

Andrews, T., Gregory, J. M., Webb, M. J. & Taylor, K. E. 2012. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophysical Research Letters 39(9). doi: 10.1029/2012GL051607.Google Scholar
Andronova, N. G. & Schlesinger, M. E. 2001. Objective estimation of the probability density function for climate sensitivity. Journal of Geophysical Research: Atmospheres (1984–2012) 106(D19), 22605–11.Google Scholar
Ångström, A. K. 1915. A study of the radiation of the atmosphere: based upon observations of the nocturnal radiation during expeditions to Algeria and to California. Smithsonian Miscellaneous Collections 65. Washington, D. C.: Smithsonian Institution.Google Scholar
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G. & Zender, C. S. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres 118(11), 5380–552.Google Scholar
Boucher, O. & Pham, M. 2002. History of sulfate aerosol radiative forcings. Geophysical Research Letters 29(9), 22-122-4.Google Scholar
Budyko, M. I. 1956. Teplovoi Balans Zemnoi Pverkhnosti. [.] Leningrad. [English translation by Stepanova, N. A., US Weather Bureau, 1958.] 259 pp.Google Scholar
Callendar, G. S. 1949. Can carbon dioxide influence climate? Weather 4(10), 310–14.Google Scholar
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. J. Jr., Hansen, J. E. & Hofmann, D. J. 1992. Climate forcing by anthropogenic aerosols. Science 255(5043), 423–30.Google Scholar
Eby, M., Zickfeld, K., Montenegro, A., Archer, D., Meissner, K. J. & Weaver, A. J. 2009. Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. Journal of Climate 22(2), 501–11.Google Scholar
Efron, B. & Tibshirani, R. J. 1994. An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability 57. Chapman & Hall/CRC Press. 456 pp.Google Scholar
Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J. M. & Morgan, V. I. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research: Atmospheres (1984–2012) 101(D2), 4115–28.Google Scholar
Feulner, G., Rahmstorf, S., Levermann, A. & Volkwardt, S. 2013. On the Origin of the Surface Air Temperature Difference between the Hemispheres in Earth's Present-Day Climate. Journal of Climate 26(18), 7136–50.Google Scholar
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C. & Rummukainen, M. 2013. Evaluation of Climate Models. In Stocker, T. F., Qin, D., Plattner, G. -K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. M. (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 741866. Cambridge, UK & New York: Cambridge University Press.Google Scholar
Forster, P. M., Andrews, T., Good, P., Gregory, J. M., Jackson, L. S. & Zelinka, M. 2013. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. Journal of Geophysical Research: Atmospheres 118(3), 1139–50.Google Scholar
Forster, P. M. & Gregory, J. M. 2006. The climate sensitivity and its components diagnosed from Earth radiation budget data. Journal of Climate 19(1), 3952.Google Scholar
Foster, G., Annan, J. D., Schmidt, G. A. & Mann, M. E. 2008. Comment on “Heat capacity, time constant and sensitivity of Earth's climate system” by S. E. Schwartz. Journal of Geophysical Research 113, D15102. doi:10.1029/2007JD009373.Google Scholar
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, R. B., Lowe, J. A., Johns, T. C. & Williams, K. D. 2004. A new method for diagnosing radiative forcing and climate sensitivity. Geophysical Research Letters 31(3), L03205, 14.Google Scholar
Haigh, J. D. 2002. Radiative forcing of climate change. Weather 57(8), 278–83.Google Scholar
Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R. & Lerner, J. 1984. Climate sensitivity: Analysis of feedback mechanisms. In Hansen, J. E. & Takahashi, T. (eds) Climate Processes and Climate Sensitivity. AGU Geophysical Monograph 29 (Maurice Ewing Vol. 5), 130–63. Washington, D. C.: American Geophysical Union.Google Scholar
Hansen, J., Sato, M., Kharecha, P. & Schuckmann, K. V. 2011. Earth's energy imbalance and implications. Atmospheric Chemistry and Physics 11(24), 13421–49.Google Scholar
Hastie, T. & Tibshirani, R. 1986. Generalized additive models. Statistical Science 1(3), 297310.Google Scholar
Held, I. M. 2013. Climate science: the cause of the pause. Nature 501(7467), 318–19.Google Scholar
IPCC. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. [Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. & Johnson, C. A. (eds)]. Cambridge, UK & New York: Cambridge University Press. 881 pp.Google Scholar
Jones, P. D., Wigley, T. M. L. & Kelly, P. M. 1982. Variations in surface air temperatures: Part 1. Northern Hemisphere, 1881–1980. Monthly Weather Review 110(2), 5970.Google Scholar
Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G. K., Gerbe, S. & Hasselmann, K. 2001. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochemical Cycles 15(4), 891907.Google Scholar
Keeling, C. D. 1960. The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12, 200–03.Google Scholar
Knutti, R., Kraehenmann, S., Frame, D. J. & Allen, M. R. 2008. Comment on “Heat capacity, time constant, and sensitivity of Earth's climate system” by S. E. Schwartz. Journal of Geophysical Research: Atmospheres (1984–2012) 113(D15), D15103, 16.Google Scholar
Lambert, F. H., Webb, M. J. & Joshi, M. M. 2011. The relationship between land–ocean surface temperature contrast and radiative forcing. Journal of Climate 24(13), 3239–56.Google Scholar
Lean, J., Beer, J. & Bradley, R. 1995. Reconstruction of solar irradiance since 1610: implications for climate change. Geophysical Research Letters 22(23), 3195–98.Google Scholar
Manabe, S. & Wetherald, R. T. 1975. The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of Atmospheric Sciences 32(1), 315.Google Scholar
Masters, T. 2014. Observational estimate of climate sensitivity from changes in the rate of ocean heat uptake and comparison to CMIP5 models. Climate Dynamics 42(7–8), 2173–81.Google Scholar
Meehl, G. A., Covey, C., Taylor, K. E., Delworth, T., Stouffer, R. J., Latif, M., McAvaney, B. & Mitchell, J. F. 2007. The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bulletin of the American Meteorological Society 88(9), 1383–94.Google Scholar
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., Matsumoto, K., Montzka, S. A, Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M. & Van Vuuren, D. P. P. 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic change 109(1-2), 213–41.Google Scholar
Mitchell, J. F. B., Johns, T. C., Gregory, J. M. & Tett, S. F. B. 1995. Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 376, 501–04.Google Scholar
Mohr, K. F. 1837. Ansichten über die Natur der Wärme. [Views on the Nature of Heat.] Annalen der Pharmacie 24, 141–47.Google Scholar
Murphy, D. M., Solomon, S., Portmann, R. W., Rosenlof, K. H., Forster, P. M. & Wong, T. 2009. An observationally based energy balance for the Earth since 1950. Journal of Geophysical Research: Atmospheres (1984–2012) 114, D17107.Google Scholar
Myhre, G., Myhre, A. & Storda, F. 2001. Historical evolution of radiative forcing of climate. Atmosphere Environment 35, 2361–73.Google Scholar
Myhre, G., Shindell, D., Bréon, F. -M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J. -F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T. & Zhang, H. 2013. Anthropogenic and Natural Radiative Forcing. In Stocker, T. F., Qin, D., Plattner, G. -K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. M. (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 659740. Cambridge, UK & New York: Cambridge University Press.Google Scholar
Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P., Le Quéré, C., Marland, G., Raupach, M. R. & Wilson, C. 2013. The challenge to keep global warming below 2oC. Nature Climate Change 3(1), 46.Google Scholar
Pierrehumbert, R. T. 2014. Short-lived climate pollution. Annual Review of Earth and Planetary Sciences 42(1), 341–79.Google Scholar
Pinheiro, J. C. & Bates, D. M. 2000. Mixed-Effects Models in S and S-PLUS. New York: Springer-Verlag.Google Scholar
Raymo, M. E., Grant, B., Horowitz, M. & Rau, G. H. 1996. Mid-Pliocene warmth: stronger greenhouse and stronger conveyor. Marine Micropaleontology 27(1–4), 313–26.Google Scholar
Roberts, C. D., Palmer, M. D., McNeall, D., & Collins, M. 2015. Quantifying the likelihood of a continued hiatus in global warming. Nature Climate Change 5, 337–42.Google Scholar
Schwartz, S. E. 2007. Heat capacity, time constant and sensitivity of Earth's climate system. Journal of Geophysical Research 112, D24S05. doi:10.1029/2007JD008746.Google Scholar
Shindell, D. T. 2014. Inhomogeneous forcing and transient climate sensitivity. Nature Climate Change 4, 274–77.Google Scholar
Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., Kettleborough, J. A., Knight, S., Martin, A., Murphy, J. M., Piani, C., Sexton, D., Smith, L. A., Spicer, R. A., Thorpe, A. J. and Allen, M. R. 2005. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433(7024). 403–06.Google Scholar
Stevenson, D. 2015. Atmospheric chemistry: Climate's chemical sensitivity. Nature Climate Change 5, 2122.Google Scholar
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93(4), 485–98.Google Scholar
Tol, R. S. & De Vos, A. F. 1998. A Bayesian statistical analysis of the enhanced greenhouse effect. Climatic Change 38(1), 87112.Google Scholar
Urban, N. M. & Keller, K. 2009. Complementary observational constraints on climate sensitivity. Geophysical Research Letters 36(4), L04708. doi:10.1029/2008GL036457Google Scholar
Wigley, T. M. & Santer, B. D. 2013. A probabilistic quantification of the anthropogenic component of twentieth century global warming. Climate Dynamics 40(5–6), 1087–102.Google Scholar
Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M. & DeConto, R. 2013. A 40-million-year history of atmospheric CO2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, 20130096.Google Scholar