Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-27T00:10:01.167Z Has data issue: false hasContentIssue false

Universal rescaling of drop impact on smooth and rough surfaces

Published online by Cambridge University Press:  30 November 2015

J. B. Lee
Affiliation:
Chair of Building Physics, ETH Zürich, Stefano-Franscini-Platz 5, CH-8093 Zürich, Switzerland
N. Laan
Affiliation:
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
K. G. de Bruin
Affiliation:
Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, Netherlands
G. Skantzaris
Affiliation:
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
N. Shahidzadeh
Affiliation:
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
D. Derome
Affiliation:
Laboratory for Multiscale Studies in Building Physics, Swiss Federal Laboratories for Materials Science and Technology, EMPA, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
J. Carmeliet*
Affiliation:
Chair of Building Physics, ETH Zürich, Stefano-Franscini-Platz 5, CH-8093 Zürich, Switzerland Laboratory for Multiscale Studies in Building Physics, Swiss Federal Laboratories for Materials Science and Technology, EMPA, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
D. Bonn
Affiliation:
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
*
Email address for correspondence: carmeliet@arch.ethz.ch

Abstract

The maximum spreading of drops impacting on smooth and rough surfaces is measured from low to high impact velocity for liquids with different surface tensions and viscosities. We demonstrate that dynamic wetting plays an important role in the spreading at low velocity, characterized by the dynamic contact angle at maximum spreading. In the energy balance, we account for the dynamic wettability by introducing the capillary energy at zero impact velocity, which relates to the spreading ratio at zero impact velocity. Correcting the measured spreading ratio by the spreading ratio at zero velocity, we find a correct scaling behaviour for low and high impact velocity and, by interpolation between the two, we find a universal scaling curve. The influence of the liquid as well as the nature and roughness of the surface are taken into account properly by rescaling with the spreading ratio at zero velocity, which, as demonstrated, is equivalent to accounting for the dynamic contact angle.

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abuku, M., Janssen, H., Poesen, J. & Roels, S. 2009 Impact, absorption and evaporation of raindrops on building facades. Build. Environ. 44 (1), 113124.Google Scholar
Bechtel, S. E., Bogy, D. B. & Talke, F. E. 1993 Impact of a liquid drop against a flat surface. IBM J. Res. Dev. 25 (6), 963971.Google Scholar
Bergeron, V., Bonn, D., Martin, J. Y. & Vovelle, L. 2000 Controlling droplet deposition with polymer additives. Nature 405 (6788), 772775.Google Scholar
Berthier, E. & Beebe, D. J. 2007 Flow rate analysis of a surface tension driven passive micropump. Lab on a Chip 7 (11), 14751478.Google Scholar
Biolè, D. & Bertola, V. 2015 A goniometric mask to measure contact angles from digital images of liquid drops. Colloids Surf. A 467, 149156.Google Scholar
Blocken, B. & Carmeliet, J. 2015 Impact, runoff and drying of wind-driven rain on a window glass surface: numerical modelling based on experimental validation. Build. Environ. 84, 170180.Google Scholar
Chandra, S. & Avedisian, C. T. 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432, 1341.Google Scholar
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.Google Scholar
Collings, E. W., Markworth, A. J., McCoy, J. K. & Saunders, J. H. 1990 Splat-quench solidification of freely falling liquid-metal drops by impact on a planar substrate. J. Mater. Sci. 25 (8), 36773682.CrossRefGoogle Scholar
Derby, B. 2010 Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40 (1), 395414.Google Scholar
Eggers, J., Fontelos, M. A., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22 (6), 062101.Google Scholar
Erkal, A., D’Ayala, D. & Sequeira, L. 2012 Assessment of wind-driven rain impact, related surface erosion and surface strength reduction of historic building materials. Build. Environ. 57, 336348.Google Scholar
Joung, Y. S. & Buie, C. R. 2015 Aerosol generation by raindrop impact on soil. Nature Commun. 6, 6083.CrossRefGoogle ScholarPubMed
Laan, N., de Bruin, K. G., Bartolo, D., Josserand, C. & Bonn, D. 2014 Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2, 044018.Google Scholar
Laan, N., de Bruin, K. G., Slenter, D., Wilhelm, J., Jermy, M. & Bonn, D. 2015 Bloodstain pattern analysis: implementation of a fluid dynamic model for position determination of victims. Sci. Rep. 5, 11461.CrossRefGoogle ScholarPubMed
Madejski, J. 1976 Solidification of droplets on a cold surface. Intl J. Heat Mass Transfer 19 (9), 10091013.CrossRefGoogle Scholar
McDonald, A., Lamontagne, M., Moreau, C. & Chandra, S. 2006 Impact of plasma-sprayed metal particles on hot and cold glass surfaces. Thin Solid Films 514 (1–2), 212222.CrossRefGoogle Scholar
Pasandideh-Fard, M., Qiao, Y. M., Chandra, S. & Mostaghimi, J. 1996 Capillary effects during droplet impact on a solid surface. Phys. Fluids 8 (3), 650.Google Scholar
Rioboo, R., Tropea, C. & Marengo, M. 2001 Outcomes from a drop impact on solid surfaces. Atomiz. Sprays 11, 155165.Google Scholar
Roisman, I. V., Rioboo, R. & Tropea, C. 2002 Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458 (2022), 14111430.Google Scholar
Wirth, W., Storp, S. & Jacobsen, W. 1991 Mechanisms controlling leaf retention of agricultural spray solutions. Pesticide Sci. 33 (4), 411420.Google Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38, 159192.Google Scholar
Zhao, R., Zhang, Q., Tjugito, H. & Cheng, X. 2015 Granular impact cratering by liquid drops: understanding raindrop imprints through an analogy to asteroid strikes. Proc. Natl Acad. Sci. USA 112 (2), 342347.Google Scholar