Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-27T15:29:18.571Z Has data issue: false hasContentIssue false

Engineered 2D nanomaterials–protein interfaces for efficient sensors

Published online by Cambridge University Press:  20 November 2015

Kiran Kumar Tadi
Affiliation:
TIFR-Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad – 500 075 Telangana, India
Tharangattu N. Narayanan*
Affiliation:
TIFR-Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad – 500 075 Telangana, India
Sivaram Arepalli
Affiliation:
Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251-1892, USA
Kaustav Banerjee
Affiliation:
Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106-9560, USA
Sowmya Viswanathan
Affiliation:
Newton Wellesley Hospital, Newton, Massachusetts 02462, USA
Dorian Liepmann
Affiliation:
Department of Bioengineering, University of California, Berkeley, California 94720-1762, USA
Pulickel M. Ajayan
Affiliation:
Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005-1892, USA
Venkatesan Renugopalakrishnan*
Affiliation:
Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
*
a)Address all correspondence to these authors. e-mail: tnn@tifrh.res.in or tn_narayanan@yahoo.com
Get access

Abstract

This article features the importance of nanomaterial–protein interfaces, with a special interest on two-dimensional (2D) nanomaterials, for next generation sensors and electronics. Graphene, the first isolated and studied 2D nanomaterial, is taken as the material of most interest and then focused on its engineering by heteroatom doping. The success of graphene engineering for sensors widened the search for better and efficient biosensor platforms of other layered materials such as boron nitride and transition metal dichalcogenides. But functionalization of 2D backbones with biomolecules often ends up with the disruption of the biological activities due to various reasons. This has to be fundamentally studied and corrected for the clinical implementation of these materials based novel sensing platforms in point-of-care devices and micro-fluidic chips. At the end, importance of various 2D materials–biomolecule interfaces is discussed, and MoS2 based label-free biosensor is highlighted. A method for the modification of MoS2–biomolecule interaction via covalent functionalization of oxygen functionalities in MoS2 is also proposed.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yang, Y., Asiri, A.M., Tang, Z., Du, D., and Lin, Y.: Graphene based materials for biomedical applications. Mater. Today 16(10), 365 (2013).CrossRefGoogle Scholar
Pumera, M.: Graphene in biosensing. Mater. Today 14(7–8), 308 (2011).Google Scholar
Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., Balicas, L., Liu, F., and Ajayan, P.M.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430 (2010).Google Scholar
Geim, A.K. and Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419 (2013).Google Scholar
Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Christian Kemp, K., Hobza, P., Zboril, R., and Kim, K.S.: Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156 (2012).CrossRefGoogle ScholarPubMed
Qiyuan, H., Shixin, W., Zongyou, Y., and Zhang, H.: Graphene-based electronic sensors. Chem. Sci. 3, 1764 (2012).Google Scholar
Vineesh, T.V., Alwarappam, S., and Narayanan, T.N.: The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes. Nanoscale 7, 6504 (2015).Google Scholar
Kundu, S., Yadav, R.M., Shelke, M.V., Narayanan, T.N., Vajtai, R., Ajayan, P.M., and Pillai, V.K.: Synthesis of N, F and S Co-doped graphene quantum dots. Nanoscale 7, 11515 (2015).CrossRefGoogle Scholar
Yang, X., Zhang, X., Ma, Y., Huang, Y., Wang, Y., and Chen, Y.: Super paramagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19, 2710 (2009).CrossRefGoogle Scholar
Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., and Kostarelos, K.: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. U. S. A. 103, 3357 (2006).Google Scholar
Li, X., Huang, X., Liu, D., Wang, X., Song, S., Zhou, L., and Zhang, H.: Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C 115, 21567 (2011).Google Scholar
Cong, H.P., He, J.J., Lu, Y., and Yu, S.H.: Water-soluble magnetic-functionalized reduced graphene oxide sheets: In situ synthesis and magnetic resonance imaging applications. Small 6, 169 (2010).Google Scholar
Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R., and Hebard, A.F.: High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745 (2012).CrossRefGoogle ScholarPubMed
Chen, D., Tang, L.H., and Li, J.H.: Graphene based materials in electrochemistry. Chem. Soc. Rev. 39, 3157 (2010).Google Scholar
Min, S.K., Kim, W.Y., Cho, Y., and Kim, K.S.: Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 6, 162 (2011).CrossRefGoogle ScholarPubMed
Loo, A.H., Bonanni, A., Ambrosi, A., Poh, H.L., and Pumera, M.: Impedimetric immunoglobulin G immunosensor based on chemically modified graphenes. Nanoscale 4(3), 921 (2012).CrossRefGoogle ScholarPubMed
Loo, A.H., Bonanni, A., and Pumera, M.: Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale 4(1), 143 (2012).Google Scholar
Hou, L., Cui, Y., Xu, M., Gao, Z., Huang, J., and Tang, D.: Graphene oxide-labeled sandwich-type impedimetric immunoassay with sensitive enhancement based on enzymatic 4-chloro-1-naphthol oxidation. Biosens. Bioelectron. 47, 149 (2013).Google Scholar
Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V., and Geim, A.K.: Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335, 442 (2012).Google Scholar
Zboril, R., Karlicky, F., Bourlinos, A.B., Athanasios, B., Steriotis, T.A., Stubos, A.K., Georgakilas, V., Safarova, K., Jancik, D., Trapalis, C., and Otyepka, M.: Graphene fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6, 2885 (2010).CrossRefGoogle ScholarPubMed
Karlicky, F., Zboril, R., and Otyepk, M.: Band gaps and structural properties of graphene halides and their derivates: A hybrid functional study with localized orbital basis sets. J. Chem. Phys. 137, 034709 (2012).CrossRefGoogle ScholarPubMed
Zhang, Y.H., Zhou, K.G., Xie, K.F., Zeng, J., Zhang, H.L., and Peng, Y.: Band gaps and structural properties of graphene halides and their derivates: A hybrid functional study with localized orbital basis sets. Nanotechnology 21, 065201 (2010).Google Scholar
Crevillen, A.G., Avila, M., Pumera, M., Gonzalez, M.C., and Escarpa, A.: Food analysis on microfluidic devices using ultrasensitive carbon nanotubes detectors. Anal. Chem. 79, 7408 (2007).Google Scholar
Crevillen, A.G., Pumera, M., Gonzales, M.C., and Escarpa, A.: Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms. Lab Chip 9, 346 (2009).Google Scholar
Sudibya, H.G., He, Q.Y., Zhang, H., and Chen, P.: Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 5, 1990 (2011).Google Scholar
He, Q.Y., Sudibya, H.G., Yin, Z.Y., Wu, S.X., Li, H., Boey, F., Huang, W., Chen, P., and Zhang, H.: Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano 4, 3201 (2010).Google Scholar
Yi, J.W., Park, J., Singh, N.J., Lee, I.J., Kim, K.S., and Kim, B.H.: Quencher-free molecular beacon: Enhancement of the signal-to-background ratio with graphene oxide. Bioorg. Med. Chem. Lett. 21, 704 (2011).Google Scholar
Lee, J.S., Joung, H.A., Kim, M.G., and Park, C.B.: Nanopore translocation dynamics of a single DNA-bound protein. ACS Nano 6, 2978 (2012).Google Scholar
Kodali, V.K., Scrimgeour, J., Kim, S., Hankinson, J.H., Carrol, K.M., Heer, W.A., Berger, C., and Curtis, J.E.: Nonperturbative chemical modification of graphene for protein micropatterning. Langmuir 27, 863 (2011).Google Scholar
Alava, T., Jason Mann, A., Théodore, C., Benitez, J.J., William, R.D., Parpia, J.M., and Craighead, H.G.: Control of the graphene-protein interface is required to preserve adsorbed protein function. Anal. Chem. 85, 2754 (2013).CrossRefGoogle ScholarPubMed
Haynes, C.A. and Norde, W.: Globular proteins at solid/liquid interfaces. Colloids Surf., B 2, 517 (1994).Google Scholar
Roach, P., Farrar, D., and Perry, C.C.: Interpretation of protein adsorption: Surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168 (2005).CrossRefGoogle ScholarPubMed
Green, A.A. and Hersam, M.C.: Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031 (2009).Google Scholar
Gurusaran, M., Rai, D., Qian, S., Weiss, K., Urban, V., Li, P., Ma, L., Narayanan, T.N., Ajayan, P.M., Sekar, K., Viswanathan, S., and Renugopalakrishanan, V.: Small angle neutron scattering studies of glucose oxidase immobilized on single layer graphene: Relevant to protein microfluidic chip. Biophys. J. 108(2), 327a (2015).Google Scholar
Thirumalai, D., Reddy, G., and Straub, J.E.: Role of water in protein aggregation and amyloid polymorphism. Acc. Chem. Res. 45(1), 83 (2012).CrossRefGoogle ScholarPubMed
Zhang, Y., Wu, C., Guo, S., and Zhang, J.: Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnol. Rev. 2(1), 27 (2013).Google Scholar
Hashim, D.P., Narayanan, T.N., Romo-Herrera, J.M., Cullen, D.A., Hahm, M.G., Lezzi, P., R Suttle, J., Kelkhoff, D., Munoz-Sandoval, E., Ganguli, S., Roy, A.K., Smith, D.J., Vajtai, R., Sumpter, B.G., Meunier, V., Terrones, H., Terrones, M., and Ajayan, P.M.: Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci. Rep. 2, 363 (2012).Google Scholar
Kumar, N., Gupta, B.K., Srivastava, A.K., Patel, H.S., Kumar, P., Bannerjee, I., Narayanan, T.N., and Varma, G.D.: Multifunctional two-dimensional reduced graphene oxide thin film for gas sensing and antibacterial applications. Sci. Adv. Mater. 7(6), 1125 (2015).Google Scholar
Sudeep, P.M., Narayanan, T.N., Ganesan, A., Shaijumon, M.M., Yang, H., Ozden, S., Patra, P.K., Pasquali, M., Vajtai, R., Ganguli, S., Roy, A.K., Anantharaman, M.R., and Ajayan, P.M.: Covalently interconnected three-dimensional graphene oxide solids. ACS Nano 7(8), 7034 (2013).Google Scholar
Wang, X., Sun, G., Routh, P., Kim, D.H., Huangb, W., and Chen, P.: Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 43, 7067 (2014).Google Scholar
Liu, L. and Shen, Z.: Bandgap engineering of graphene: A density functional theory study. Appl. Phys. Lett. 95, 252104 (2009).Google Scholar
Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487 (2010).Google Scholar
Liu, Y., Dong, X., and Chen, P.: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283 (2012).Google Scholar
Chang, H., Tang, L., Wang, Y., Jiang, J., and Li, J.: Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 82, 2341 (2010).CrossRefGoogle ScholarPubMed
Wang, Y., Li, Z., Hu, D., Lin, C-T., Li, J., and Lin, Y.: Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132, 9274 (2010).CrossRefGoogle ScholarPubMed
Lu, C.H., Zhu, C.L., Li, J., Liu, J.J., Chen, X., and Yang, H.H.: Using graphene to protect DNA from cleavage during cellular delivery. Chem. Commun. 46, 3116 (2010).Google Scholar
Liu, Z., Robinson, J.T., Sun, X., and Dai, H.: PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876 (2008).Google Scholar
Sun, Q., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., and Dai, H.: Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203 (2008).Google Scholar
Huang, H., Li, Z., She, J., and Wang, W.: Oxygen density dependent band gap of reduced graphene oxide. J. Appl. Phys. 111, 054317 (2012).Google Scholar
Mathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., Mohana Reddy, A.L., and Ajayan, P.M.: Controlled, stepwise reduction and band gap manipulation of graphene oxide. J. Phys. Chem. Lett. 3, 986 (2012).Google Scholar
Wu, M., Cao, C., and Jiang, J.Z.: Light non-metallic atom (B, N, O and F)-doped graphene: A first-principles study. Nanotechnology 21, 505202 (2010).Google Scholar
Martins, T.B., Miwa, R.H., Silva, A.J.R.D., and Fazzio, A.: Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98, 196803 (2007).Google Scholar
Panchokarla, L.S., Subrahmanyam, K.S., Saha, S.K., Govindaraj, A., Krishnamurthy, H.R., Waghmare, U.V., and Rao, C.N.R.: Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726 (2009).CrossRefGoogle Scholar
Li, Z., Zhang, Z.Y., Liang, R.P., Li, Y.H., and Qiu, J.D.: Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement. Anal. Chem. 86, 4423 (2014).Google Scholar
Kong, R.X.K. and Chen, Q.W.: The positive influence of boron-doped graphene with pyridine as a probe molecule on SERS: A density functional theory study. J. Mater. Chem. 22, 15336 (2012).Google Scholar
Usachov, D., Vilkov, O., Gruneis, A., Haberer, D., Fedorov, A., Adamchuk, V.K., Preobrajenski, A.B., Dudin, P., Barinov, A., Oehzelt, M., Laubschat, C., and Vyalikh, D.V.: Nitrogen-doped graphene: Efficient growth, structure, and electronic properties. Nano Lett. 11, 5401 (2011).Google Scholar
Ruitao, L., Li, Q., Botello-Mendez, A.R., Hayashi, T., Wang, B., Berkdemir, A., Hao, Q., Laura El, A., Cruz-Silva, R., Gutierrez, H.R., Kim, Y.A., Muramatsu, H., Zhu, J., Endo, M., Terrones, H., Charlier, J.C., Pan, M., and Terrones, M.: Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing. Sci. Rep. 2, 586 (2012).Google Scholar
Sheng, S.Z.H., Zheng, X.Q., Xu, J.Y., Bao, W.J., Wang, F.B., and Xia, X.H.: Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 34, 125 (2012).CrossRefGoogle ScholarPubMed
Fan, T.H.X., Li, Y., Wu, D., Ma, H.M., Mao, K.X., Fan, D.W., Du, B., Li, H., and Wei, Q.: Electrochemical bisphenol A sensor based on N-doped graphene sheets. Anal. Chim. Acta 711, 24 (2012).Google Scholar
Mukherjee, S. and Kaloni, T.P.: Electronic properties of boron and nitrogen doped graphene: A first principles study. J. Nanopart. Res. 14, 1059 (2012).Google Scholar
Muchharla, B., Pathak, A., Liu, Z., Song, L., Jayasekera, T., Kar, S., Vajtai, R., Balicas, L., Ajayan, P.M., Talapatra, S., and Ali, N.: Tunable electronics in large-area atomic layers of boron–nitrogen–carbon. Nano Lett. 13, 3476 (2013).CrossRefGoogle ScholarPubMed
Yang, G.H., Zhou, Y.H., Wu, J.J., Cao, J.T., Li, L.L., Liu, H.Y., and Zhu, J.J.: Microwave-assisted synthesis of nitrogen and boron co-doped graphene and its application for enhanced electrochemical detection of hydrogen peroxide. RSC Adv. 3, 22597 (2013).Google Scholar
Denis, P.A.: Concentration dependence of the band gaps of phosphorus and sulfur doped graphene. Comput. Mater. Sci. 67, 203 (2013).Google Scholar
Leenaerts, O., Peelaers, H., Hernandez-Nieves, A.D., Partoens, B., and Peeters, F.M.: First-principles investigation of graphene fluoride and graphane. Phys. Rev. B 82, 195436 (2010).Google Scholar
Boopathi, S., Narayanan, T.N., and Senthil Kumar, S.: Improved heterogeneous electron transfer kinetics of fluorinated graphene derivaties. Nanoscale 6, 10140 (2014).Google Scholar
Yang, M.M., Zhou, L., Wang, J.Y., Liu, Z.F., and Liu, Z.R.: Evolutionary chlorination of graphene: From charge-transfer complex to covalent bonding and nonbonding. J. Phys. Chem. C 116, 844 (2012).Google Scholar
Poh, H.L., Simek, P., Sofer, Z., and Pumera, M.: Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano 7(6), 5262 (2013).Google Scholar
Denis, P.A., Faccio, R., and Mombru, A.W.. Is it possible to dope single-walled carbon nanotubes and graphene with sulphar. Chem. Phys. Chem. 10, 715 (2009).Google Scholar
Shao, Y.Y., Zhang, S., Engelhard, M.H., Li, G.S., Shao, G.C., Wang, Y., Liu, J., Aksay, I.A., and Lin, Y.H.: Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20, 7491 (2010).Google Scholar
Guo, P.P., Xiao, F., Liu, Q., Liu, H.F., Guo, Y.L., Gong, J.R., Wang, S., and Liu, Y.Q.: One-pot microbial method to synthesize dual-doped graphene and its use as high-performance electrocatalyst. Sci. Rep. 3, 3499 (2013).CrossRefGoogle ScholarPubMed
Kumar, B., Min, K., Bashirzadeh, M., Barati Farimani, A., Bae, M.H., Estrada, D., Kim, Y.D., Yasaei, P., Park, Y.D., Pop, E., Aluru, N.R., and Salehi-Khojin, A.: The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett. 13, 1962 (2013).Google Scholar
Jeong, H.Y., Lee, D.S., Choi, H.K., Lee, D.H., Kim, J.E., Lee, J.Y., Lee, W.J., Kim, S.O., and Choi, S.Y.: Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl. Phys. Lett. 96, 213105 (2010).Google Scholar
Yu, K.H., Wang, P.X., Lu, G.H., Chen, K.H., Bo, Z., and Chen, J.H.: Patterning vertically oriented graphene sheets for nanodevice applications. J. Phys. Chem. Lett. 2, 537 (2011).Google Scholar
Shang, N.G., Papakonstantinou, P., McMullan, M., Chu, M., Stamboulis, A., Potenza, A., Dhesi, S.S., and Marchetto, H.: Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18, 3506 (2008).Google Scholar
Ortiz-Medina, J., López-Urías, F., Terrones, H., Rodríguez-Macías, F.J., Endo, M., and Terrones, M.: Differential response of doped/defective graphene and dopamine to electric fields: A density functional theory study. J. Phys. Chem. C 119, 13972 (2015).Google Scholar
Cazorla, C.: Ab initio study of the binding of collagen amino acids to graphene and A-doped (A = H, Ca) graphene. Thin Sold Films 518, 6951 (2010).CrossRefGoogle Scholar
Tang, Y.B., Yin, L.C., Yang, Y., Bo, X.H., Cao, Y.L., Wang, H.E., Zhang, W.J., Bello, I., Lee, S.T., Cheng, H.M., and Lee, Ch.S.: Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano 6(3), 1970 (2012).Google Scholar
Parra, C., Montero-Silva, F., Henríquez, R., Flores, M., Garín, C., Ramírez, C., Moreno, M., Correa, J., Seeger, M., and Häberle, P.: Suppressing bacterial interaction with copper surfaces through graphene and hexagonal-boron nitride coatings. ACS Appl. Mater. Interfaces 7(12), 6430 (2015).Google Scholar
Gao, T., Song, X., Du, H., Nie, Y., Chen, Y., Ji, Q., Sun, J., Yang, Y., and Liu, Y.Z.Z.: Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat. Commun. 6, 6835 (2015).Google Scholar
Xue, Y., Liu, Q., He, G., Xu, K., Jiang, L., Hu, X., and Hu, J.: Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets. Nanoscale Res. Lett. 8, 49 (2013).Google Scholar
Wang, J., Zhao, R., Liu, Z., and Liu, Z.: Widely tunable carrier mobility of boron nitride-embedded graphene. Small 9, 1373 (2013).Google Scholar
Karamanis, P. and Pouchan, C.: Electric property variations in nanosized hexagonal boron nitride/graphene hybrids. J. Phys. Chem. C 119(21), 11872 (2015).Google Scholar
Guo, Y. and Guo, W.: Insulating to metallic transition of an oxidized boron nitride nanosheet coating by tuning surface oxygen adsorption. Nanoscale 6, 3731 (2014).Google Scholar
Ponomarenko, L.A., Geim, A.K., Zhukov, A.A., Jalil, R., Morozov, S.V., Novoselov, K.S., Grigorieva, I.V., Hill, E.H., Cheianov, V.V., Falko, V.I., Watanabe, K., Taniguchi, T., and Gorbachev, R.V.: Tunable metal–insulator transition in double-layer graphene heterostructures. Nat. Phys. 7, 958 (2011).Google Scholar
Feng, P., Li, E.Y., Sajjad, M., Aldalbahi, A., and Chu, J.: Boron nitride nanosheets and their electrical tunneling effect. Sci. Adv. Mater. 7(7), 1326 (2015).CrossRefGoogle Scholar
Cai, Q., Li, L.H., Yu, Y., Liu, Y., Huang, S., Chen, Y., Watanabe, K., and Taniguchi, T.: Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 17, 7761 (2015).Google Scholar
Hirai, H., Tsuchiya, H., Kamakura, Y., Mori, N., and Ogawa, M.: Electron mobility calculation for graphene on substrates. J. Appl. Phys. 116, 083703 (2014).Google Scholar
Wang, J., Zhao, R., Yang, M., Liu, Z., and Liu, Z.: Inverse relationship between carrier mobility and bandgap in graphene. J. Chem. Phys. 138, 084701 (2013).Google Scholar
Liu, W., Krämer, S., Sarkar, D., Li, H., Ajayan, P.M., and Banerjee, K.: Controllable and rapid synthesis of high-quality and large-area bernal stacked bilayer graphene using chemical vapor deposition. Chem. Mater. 26(2), 907 (2014).CrossRefGoogle Scholar
Ghoshdastider, U., Rongliang, W., Trzaskowskib, B., Mlynarczykb, K., Misztab, P., Gurusaran, M., Viswanathan, S., Renugopalakrishn, V., and Filipek, S.: Molecular effects of encapsulation of glucose oxidase dimer by graphene. RSC Adv. 5, 13570 (2015).Google Scholar
Viswanathan, S., Narayanan, T.N., Aran, K., Fink, K.D., Paredes, J., Ajayan, P.M., Filipek, S., Miszta, P., Tekin, H.C., Inci, F., Demirci, U., Li, P., Bolotin, K.I., Liepmann, D., and Renugopalakrishanan, V.: Graphene–protein field effect biosensors: Glucose sensing. Mater. Today 18(9) 513 (2015).Google Scholar
Sarkar, D., Liu, W., Xie, X., Anselmo, A., Mitragotri, S., and Banerjee, K.: MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8(4), 3992 (2014).CrossRefGoogle ScholarPubMed
Zhou, R.: Modeling of Nanotoxicity—Molecular Interaction of Nanomaterials with Biomachines (Springer International Publishing: Switzerland, 2015); p. 127.Google Scholar
Zhou, L., He, B., Yang, Y., and He, Y.: Facile approach to surface functionalized MoS2 nanosheets. RSC Adv. 4, 32570 (2014).CrossRefGoogle Scholar