Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T19:26:17.441Z Has data issue: false hasContentIssue false

Multifractal analysis of Birkhoff averages for countable Markov maps

Published online by Cambridge University Press:  25 August 2015

GODOFREDO IOMMI
Affiliation:
Facultad de Matemáticas, Pontificia Universidad Católica de Chile (PUC), Avenida Vicuña Mackenna 4860, Santiago, Chile email giommi@mat.puc.cl
THOMAS JORDAN
Affiliation:
The School of Mathematics, The University of Bristol, University Walk, Clifton, Bristol BS8 1TW, UK email Thomas.Jordan@bristol.ac.uk

Abstract

In this paper we prove a multifractal formalism of Birkhoff averages for interval maps with countably many branches. Furthermore, we prove that under certain assumptions the Birkhoff spectrum is real analytic. We also show that new phenomena occur; indeed, the spectrum can be constant or it can have points where it is not analytic. Conditions for these to happen are obtained. Applications of these results to number theory are also given. Finally, we compute the Hausdorff dimension of the set of points for which the Birkhoff average is infinite.

Type
Research Article
Copyright
© Cambridge University Press, 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barreira, L.. Dimension and Recurrence in Hyperbolic Dynamics (Progress in Mathematics, 272). Birkhäuser, Basel, 2008, xiv+300 pp.Google Scholar
Barreira, L. and Saussol, B.. Variational principles and mixed multifractal spectra. Trans. Amer. Math. Soc. 353 (2001), 39193944.CrossRefGoogle Scholar
Barreira, L. and Schmeling, J.. Sets of ‘non-typical’ points have full topological entropy and full Hausdorff dimension. Israel J. Math. 116 (2000), 2970.CrossRefGoogle Scholar
Falconer, K.. Fractal geometry. Mathematical Foundations and Applications, 2nd edn. John Wiley & Sons, Inc., Hoboken, NJ, 2003.Google Scholar
Fan, A., Jordan, T., Liao, L. and Rams, M.. Multifractal analysis for expanding interval maps with infinitely many branches. Trans. Amer. Math. Soc. 367(3) (2015), 18471870.CrossRefGoogle Scholar
Fan, A., Feng, D. and Wu, J.. Recurrence, dimension and entropy. J. Lond. Math. Soc. (2) 64(1) (2001), 229244.CrossRefGoogle Scholar
Fan, A., Liao, L., Wang, B. and Wu, J.. On Khintchine exponents and Lyapunov exponents of continued fractions. Ergod. Th. & Dynam. Sys. 29(1) (2009), 73109.CrossRefGoogle Scholar
Fan, A., Liao, L. and Ma, J.. On the frequency of partial quotients of regular continued fractions. Math. Proc. Cambridge Philos. Soc. 148(1) (2010), 179192.CrossRefGoogle Scholar
Feng, D., Lao, K. and Wu, J.. Ergodic limits on the conformal repellers. Adv. Math. 169(1) (2002), 5891.CrossRefGoogle Scholar
Gelfert, K. and Rams, M.. The Lyapunov spectrum of some parabolic systems. Ergod. Th. & Dynam. Sys. 29 (2009), 919940.CrossRefGoogle Scholar
Hanus, P., Mauldin, R. D. and Urbanski, M.. Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems. Acta Math. Hungar. 1–2 (2002), 2798.CrossRefGoogle Scholar
Hardy, G. H. and Wright, E. M.. An Introduction to the Theory of Numbers, 5th edn. The Clarendon Press, Oxford University Press, New York, 1979.Google Scholar
Iommi, G.. Multifractal analysis for countable Markov shifts. Ergod. Th. & Dynam. Sys. 25(6) (2005), 18811907.CrossRefGoogle Scholar
Iommi, G. and Jordan, T.. Multifractal analysis of quotients of Birkhoff sums for countable Markov maps. Int. Math. Res. Not. IMRN 2 (2015), 460498.CrossRefGoogle Scholar
Iommi, G. and Kiwi, J.. The Lyapunov spectrum is not always concave. J. Stat. Phys. 135 (2009), 535546.CrossRefGoogle Scholar
Jaerisch, J. and Kesseböhmer, M.. Regularity of multifractal spectra of conformal iterated function systems. Trans. Amer. Math. Soc. 363(1) (2011), 313330.CrossRefGoogle Scholar
Jenkinson, O., Mauldin, R. D. and Urbański, M.. Zero temperature limits of Gibbs-equilibrium states for countable alphabet subshifts of finite type. J. Stat. Phys. 119 (2005), 765776.CrossRefGoogle Scholar
Johansson, A., Jordan, T., Öberg, A. and Pollicott, M.. Multifractal analysis of non-uniformly hyperbolic systems. Israel J. Math. 177 (2010), 125144.CrossRefGoogle Scholar
Kesseböhmer, M., Munday, S. and Stratmann, B.. Strong renewal theorems and Lyapunov spectra for 𝛼-Farey and 𝛼-Lüroth systems. Ergod. Th. & Dynam. Sys. 32(3) (2012), 9891017.CrossRefGoogle Scholar
Kesseböhmer, M. and Stratmann, B.. A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates. J. Reine Angew. Math. 605 (2007), 133163.Google Scholar
Khinchin, A. Y.. Continued Fractions. With a preface by B. V. Gnedenko. Translated from the 3rd (1961) Russian edn. Reprint of the 1964 translation. Dover Publications, Mineola, NY, 1997.Google Scholar
Leplaideur, R.. A dynamical proof for the convergence of Gibbs measures at temperature zero. Nonlinearity 18(6) (2005), 28472880.CrossRefGoogle Scholar
Mauldin, R. D. and Urbański, M.. Dimensions and measures in infinite iterated function systems. Proc. Lond. Math. Soc. (3) 73(1) (1996), 105154.CrossRefGoogle Scholar
Olsen, L.. Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. J. Math. Pures Appl. (9) 82(12) (2003), 15911649.CrossRefGoogle Scholar
Pollicott, M. and Weiss, H.. Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation. Comm. Math. Phys. 207(1) (1999), 145171.CrossRefGoogle Scholar
Pesin, Y.. Dimension Theory in Dynamical Systems. Contemporary Views and Applications (Chicago Lectures in Mathematics). University of Chicago Press, Chicago, IL, 1997.CrossRefGoogle Scholar
Pesin, Y. and Weiss, H.. The multifractal analysis of Birkhoff averages and large deviations. Global Analysis of Dynamical Systems. Institute of Physics, Bristol, 2001, pp. 419431.Google Scholar
Sarig, O.. Thermodynamic formalism for countable Markov shifts. Ergod. Th. & Dynam. Sys. 19(6) (1999), 15651593.CrossRefGoogle Scholar
Sarig, O.. Phase transitions for countable Markov shifts. Comm. Math. Phys. 217(3) (2001), 555577.CrossRefGoogle Scholar
Sarig, O.. Existence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc. 131(6) (2003), 17511758.CrossRefGoogle Scholar
Stratmann, B. O. and Urbański, M.. Real analyticity of topological pressure for parabolically semihyperbolic generalized polynomial-like maps. Indag. Math. (N.S.) 14(1) (2003), 119134.CrossRefGoogle Scholar
Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, New York, 1981.Google Scholar