Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T14:56:57.527Z Has data issue: false hasContentIssue false

A Darboux-type theorem for germs of holomorphic one-dimensional foliations

Published online by Cambridge University Press:  04 August 2014

CÉSAR CAMACHO
Affiliation:
IMPA, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro, 22460-320, Brazil
BRUNO SCÁRDUA
Affiliation:
Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, 21.945-970 Rio de Janeiro, Brazil email scardua@im.ufrj.br, scardua@impa.br

Abstract

We show that a germ of a holomorphic one-dimensional foliation at a singularity in a space of dimension two admits a holomorphic first integral if and only if there are infinitely many closed leaves and a finite number of separatrices, with each separatrix having linearizable holonomy. Indeed, if there are infinitely many closed leaves and the set of separatrices is finite, then the foliation admits either a holomorphic first integral or a formal simple integrating factor of Darboux type.

Type
Research Article
Copyright
© Cambridge University Press, 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abate, M.. Discrete holomorphic local dynamical systems. Holomorphic Dynamical Systems (Lecture Notes in Mathematics, 1998). Eds. Gentili, G., Guenot, J. and Patrizio, G.. Springer, Berlin, 2010, pp. 155.CrossRefGoogle Scholar
Alexander, J. C. and Verjovsky, A.. First integrals for singular holomorphic foliations with leaves of bounded volume. Holomorphic Dynamics (Mexico, 1986) (Lecture Notes in Mathematics, 1345). Springer, Berlin, 1988, pp. 110.Google Scholar
Bracci, F.. Local dynamics of holomorphic diffeomorphisms. Boll. Unione Mat. Ital. 7-B (2004), 609–636.Google Scholar
Biswas, K.. Simultaneous linearization of germs of commuting holomorphic diffeomorphisms. Ergod. Th. & Dynam. Sys. 32 (2012), 12161225.CrossRefGoogle Scholar
Camacho, C.. On the local structure of conformal maps and holomorphic vector fields in ℂ2. Journées Singuliéres de Dijon (12–16 Juin 1978) (Astérisque, 59). Société Mathématique de France, Paris, 1978, pp. 8394.Google Scholar
Camacho, C., Kuiper, N. and Palis, J.. The topology of holomorphic flows with singularity. Inst. Hautes Études Sci. Publ. Math. 48 (1978), 538.CrossRefGoogle Scholar
Camacho, C. and Lins Neto, A.. Geometric Theory of Foliations. Birkhauser, Boston, 1985.CrossRefGoogle Scholar
Camacho, C., Lins Neto, A. and Sad, P.. Foliations with algebraic limit sets. Ann. of Math. (2) 136 (1992), 429446.CrossRefGoogle Scholar
Camacho, C. and Sad, P.. Invariant varieties through singularities of holomorphic vector fields. Ann. of Math. (2) 115 (1982), 579595.CrossRefGoogle Scholar
Camacho, C. and Sad, P.. Topological classification and bifurcations of holomorphic flows with resonances in ℂ2. Invent. Math. 67 (1982), 447472.CrossRefGoogle Scholar
Camacho, C. and Scárdua, B.. Foliations on complex projective spaces with algebraic limit sets. Géométrie Complexe et Systèmes Dynamiques (Orsay, 1995) (Astérisque, 261). Société Mathématique de France, Paris, 2000, pp. 5788.Google Scholar
Camacho, C. and Scárdua, B.. On the existence of stable compact leaves for transversely holomorphic foliations. Topology Appl. 160(13) (2013), 18021808.CrossRefGoogle Scholar
Cerveau, D. and Moussu, R.. Groupes d’automorphismes de (ℂ, 0) et équations différentielles y dy + ⋯ = 0. Bull. Soc. Math. France 116 (1988), 459488.CrossRefGoogle Scholar
Cremer, H.. Zum Zentrumproblem. Math. Ann. 98 (1927), 151163.CrossRefGoogle Scholar
Darboux, G.. Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré. Bull. Sci. Math. 2 (1878), 6096 123–144; 151–200.Google Scholar
Dulac, H.. Solutions d’un système de équations différentiale dans le voisinage des valeus singulières. Bull. Soc. Math. France 40 (1912), 324383.CrossRefGoogle Scholar
Gunning, R. C.. Introduction to Holomorphic Functions of Several Variables, Volume I: Function Theory. Wadsworth & Brooks/Cole, Pacific Grove, CA, 1990.Google Scholar
Gunning, R. C.. Introduction to Holomorphic Functions of Several Variables, Volume II: Local Theory. Wadsworth & Brooks/Cole, Monterey, CA, 1990.Google Scholar
Jouanolou, J. P.. Équations de Pfaff algèbriques (Lecture Notes in Mathematics, 708). Springer, Berlin, 1979.CrossRefGoogle Scholar
Mattei, J. F. and Moussu, R.. Holonomie et intégrales premières. Ann. Sci. École Norm. Sup. (4) 13 (1980), 469523.CrossRefGoogle Scholar
Martinet, J. and Ramis, J.-P.. Classification analytique des équations différentielles non linéaires resonnants du premier ordre. Ann. Sci. École Norm. Sup. (4) 16 (1983), 571621.CrossRefGoogle Scholar
Martinet, J. and Ramis, J.-P.. Problème de modules pour des équations différentielles non linéaires du premier ordre. Publ. Math. Inst. Hautes Études Sci. 55 (1982), 63124.CrossRefGoogle Scholar
Nakai, I.. Separatrices for nonsolvable dynamics on ℂ,0. Ann. Inst. Fourier (Grenoble) 44 (1994), 569599.CrossRefGoogle Scholar
Pérez-Marco, R.. Sur les dynamiques holomorphes non linéarisables et une conjecture de V. I. Arnold. Ann. Sci. École Norm. Sup. 26 (1993), 565644.CrossRefGoogle Scholar
Pérez-Marco, R.. Sur une question de Dulac et Fatou. C.R. Acad. Sci. Paris 321 (1995), 10451048.Google Scholar
Pérez-Marco, R.. Fixed points and circle maps. Acta Math. 179 (1997), 243294.CrossRefGoogle Scholar
Pérez-Marco, R. and Yoccoz, J.-C.. Germes de feuilletages holomorphes à holonomie prescrite. Complex Analytic Methods in Dynamical Systems 7 (Rio de Janeiro, 1992) (Astérisque, 222). Société Mathématique de France, Paris, 1994, pp. 345371.Google Scholar
Poincaré, H.. Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré. Rend. Circ. Mat. Palermo 5 (1881), 161191.CrossRefGoogle Scholar
Raissy, J.. Geometrical methods in the normalization of germs of biholomorphisms. PhD Thesis, Università di Pisa, 2010.Google Scholar
Scárdua, B.. Complex vector fields having orbits with bounded geometry. Tohoku Math. J. (2) 54(3) (2002), 367392.CrossRefGoogle Scholar
Scárdua, B.. Integration of complex differential equations. J. Dynam. Control Sys. 5(1) (1999), 150.CrossRefGoogle Scholar
Seidenberg, A.. Reduction of singularities of the differential equation A dy = B dx. Amer. J. Math. 90 (1968), 248269.CrossRefGoogle Scholar