Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T13:20:20.747Z Has data issue: false hasContentIssue false

Evolution of body mass in the Pan-Alcidae (Aves, Charadriiformes): the effects of combining neontological and paleontological data

Published online by Cambridge University Press:  23 October 2015

N. Adam Smith*
Affiliation:
National Evolutionary Synthesis Center 2024 W. Main St., Suite A200, Durham, NC, USA. North Carolina Museum of Natural Sciences, 11 W. Jones St., Raleigh, NC, USA

Abstract

Hypotheses regarding the evolution of many clades are often generated in the absence of data from the fossil record and potential biases introduced by exclusion of paleontological data are frequently ignored. With regard to body size evolution, extinct taxa are frequently excluded because of the lack of body mass estimates—making identification of reliable clade specific body mass estimators crucial to evaluating trends on paleontological timescales. Herein, I identify optimal osteological dimensions for estimating body mass in extinct species of Pan-Alcidae (Aves, Charadriiformes) and utilize newly generated estimates of body mass to demonstrate that the combination of neontological and paleontological data produces results that conflict with hypotheses generated when extant species data are analyzed in isolation. The wing-propelled diving Pan-Alcidae are an ideal candidate for comparing estimates of body mass evolution based only on extant taxa with estimates generated including fossils because extinct species diversity (≥31 species) exceeds extant diversity, includes examples from every extant genera, and because phylogenetic hypotheses of pan-alcid relationships are not restricted to the 23 extant species. Phylogenetically contextualized estimation of body mass values for extinct pan-alcids facilitated evaluation of broad scale trends in the evolution of pan-alcid body mass and generated new data bearing on the maximum body mass threshold for aerial flight in wing-propelled divers. The range of body mass in Pan-Alcidae is found to exceed that of all other clades of Charadriiformes (shorebirds and allies) and intraclade body mass variability is recognized as a recurring theme in the evolution of the clade. Finally, comparisons of pan-alcid body mass range with penguins and the extinct †Plotopteridae elucidate potentially shared constraints among phylogenetically disparate yet ecologically similar clades of wing-propelled divers.

Type
Featured Article
Copyright
Copyright © 2015 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ainley, D. G. 1990. Farallon seabirds: patterns at the community level. In D. G. Ainley, and R. J. Boekelheide, eds. Seabirds of the Farallon Islands: ecology, dynamics, and structure of an upwelling-system community. Stanford University Press, Stanford.Google Scholar
Ainley, D. G., Strong, C. S., Penniman, T. M., and Boekelheide, R. J. 1990. The feeding ecology of Farallon seabirds. Pp. 51127. in D. G. Ainley, and R. J. Boekelheide, eds. Seabirds of the Farallon Islands: ecology, dynamics, and structure of an upwelling-system community. Stanford University Press, Stanford, CA.Google Scholar
Anderson, J. F., Rahn, H., and Prange, H. D. 1979. Scaling of Supportive Tissue Mass. Quarterly Review of Biology 54:139148.CrossRefGoogle Scholar
Ando, T., and Fordyce, R. E. 2013. Evolutionary drivers for flightless, wing-propelled divers in the Northern and Southern Hemispheres. Palaeogeography Palaeoclimatology Palaeoecology 400:5061.CrossRefGoogle Scholar
Ashmole, N. P. 1968. Body Size Prey Size and Ecological Segregation in 5 Sympatric Tropical Terns (Aves Laridae). Systematic Zoology 17:292304.CrossRefGoogle Scholar
Barrett, R. T., Anker-Nielsen, T., and Krasov, Y. V. 1997. Can Norwegian and Russian Razorbills Alca torda be identified by their measurements? Marine Ornithology 25:58.Google Scholar
Bedard, J. 1985. Evolution and characteristics of the Atlantic Alcidae. Pp. 150in D. N. Nettleship, and T. R. Birkhead, eds. The Atlantic Alcidae: the evolution, distribution, and biology of the auks inhabiting the Atlantic Ocean and adjacent water areas. Academic Press, London.Google Scholar
Bergmann, C. 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3:595708.Google Scholar
Birkhead, T. R. 1993. Great Auk Islands: a field biologist in the Arctic. Poyser, London.Google Scholar
Blackburn, T. M., and Gaston, K. J. 1994. The Distribution of Body Sizes of the Worlds Bird Species. Oikos 70:127130.CrossRefGoogle Scholar
Blackburn, T. M., and Gaston, K. J.. 1996. Spatial patterns in the body sizes of bird species in the New World. Oikos 77:436446.CrossRefGoogle Scholar
Boessenecker, R. W., and Smith, N. A. 2011. Latest Pacific Basin record of a bony-toothed bird (Aves, Pelagornithidae) from the Pliocene Purisima Formation of California, USA. Journal of Vertebrate Paleontology 31:652657.CrossRefGoogle Scholar
Campbell, K. E. Jr., and Marcus, L. 1992. The relationship of hindlimb bone dimensions to body weight in birds. Science Series. Natural History Museum of Los Angeles County 36:395412.Google Scholar
Campione, N. E., and Evans, D. C. 2012. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology 10:60 doi: 10.1186/1741-7007-10-60.CrossRefGoogle ScholarPubMed
Chandler, R. M. 1990. Fossil birds of the San Diego Formation, Late Pliocene, Blancan, San Diego County California. Ornithological Monographs 44:73161.CrossRefGoogle Scholar
Cope, E. D. 1887. The Origin of the Fittest. Appleton, New York.Google Scholar
Dunning, J. B. J. 2008. CRC Handbook of Avian Body Masses, 2nd Ed. CRC Press, Boca Raton.Google Scholar
Dyke, G. J., Wang, X., and Habib, M. B. 2011. Fossil Plotopterid Seabirds from the Eo-Oligocene of the Olympic Peninsula (Washington State, USA): Descriptions and Functional Morphology. Plos One 6:e25672 doi: 10.1371/journal.pone.0025672.CrossRefGoogle ScholarPubMed
Elliott, K. H., Ricklefs, R. E., Gaston, A. J., Hatch, S. A., Speakman, J. R., and Davoren, G. K. 2013. High flight costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins. Proceedings of the National Academy of Sciences of the USA 110:93809384.CrossRefGoogle ScholarPubMed
Etienne, R. S., and Apol, M. E. 2009. Estimating speciation and extinction rates from diversity data and the fossil record. Evolution 63:244255.CrossRefGoogle ScholarPubMed
Field, D. J., Lynner, C., Brown, C., and Darroch, S. A. F. 2013. Skeletal correlates for body mass estimation in modern and fossil flying birds. Plos One 8:e82000 doi:10.1371/journal.pone.0082000.CrossRefGoogle ScholarPubMed
Fuller, E. 1999. The Great Auk. Errol Fuller, Kent, England.Google Scholar
Grafen, A. 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society of London B 326:119157.Google ScholarPubMed
Gryz, P. K. 2013. Tajemnice ewolucji alk. Kosmos 62:443454.Google Scholar
Habib, M. 2010. The structural mechanics and evolution of aquaflying birds. Biological Journal of the Linnean Society 99:687698.CrossRefGoogle Scholar
Hackett, S., Kimball, R., Reddy, S., Bowie, R., Braun, E., Braun, M., Chojnowski, J., Cox, W., Han, K., and Harshman, J. 2008. A phylogenomic study of birds reveals their evolutionary history. Science 320:1763.CrossRefGoogle ScholarPubMed
Hardin, G. 1960. The competitive exclusion principle. Science 131:12921297.CrossRefGoogle ScholarPubMed
Harvey, P. H., and Pagel, M. D. 1991. The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.CrossRefGoogle Scholar
Hipfner, J. M., and Greenwood, J. M.. 2008. Breeding biology of the Common Murre at Triangle Island, British Columbia, Canada, 2002–2007. Northwestern Naturalist 89:7684.CrossRefGoogle Scholar
Hurvich, C. M., and Tsai, C. L.. 1989. Regression and Time-Series Model Selection in Small Samples. Biometrika 76:297307.CrossRefGoogle Scholar
Jadwiszczak, P. 2001. Body size of Eocene antarctic penguins. Polish Polar Research 22:147158.Google Scholar
Kawano, T., and Kawano, S. 2001. A large plotopterid (penguin-like bird) fossil from Sakido-cho, Nagasaki Prefecture. P. abstract no. 60. 150th Regular Meeting of the Paleontological Society of Japan. Iwai, Ibaraki Prefecture.Google Scholar
Kovacs, C. E., and Meyers, R. A. 2000. Anatomy and Histochemistry of Flight Muscles in a Wing-Propelled Diving Bird, the Atlantic Puffin, Fratercula arctica. Journal of Morphology 244:109125.3.0.CO;2-0>CrossRefGoogle Scholar
Ksepka, D. T. 2014. Flight performance of the largest volant bird. Proceedings of the National Academy of Sciences of the United States of America 111:1062410629.CrossRefGoogle ScholarPubMed
Ksepka, D. T., Fordyce, R. E., Ando, T., and Jones, C. M. 2012. New Fossil Penguins (Aves, Sphenisciformes) from the Oligocene of New Zealand Reveal the Skeletal Plan of Stem Penguins. Journal of Vertebrate Paleontology 32:235254.CrossRefGoogle Scholar
Livezey, B. C. 1989. Morphometric Patterns in Recent and Fossil Penguins (Aves, Sphenisciformes). Journal of Zoology 219:269307.CrossRefGoogle ScholarPubMed
Macarthur, R., and Levins, R. 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101:377385.CrossRefGoogle Scholar
Martins, E. P., and Hansen, T. F. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist 149:646667.CrossRefGoogle Scholar
Maurer, B. A. 2013. Geographic variation in body size distributions of continental avifauna. Pp. 8394in F. A. Smith, and S. K. Lyons, eds. Animal Body Size: Linking pattern and process across space time and taxonomic group. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Mayr, G. 2009. Paleogene fossil birds. Springer, Heidelberg.CrossRefGoogle Scholar
Mayr, G., and Clarke, J. 2003. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics 19:527553.CrossRefGoogle ScholarPubMed
McClain, C. R., and Boyer, A. G. 2009. Biodiversity and body size are linked across metazoans. Proceedings of the Royal Society B 276:22092215.CrossRefGoogle ScholarPubMed
McCormack, J. E., Harvey, M. G., Faircloth, B. C., Crawford, N. G., Glenn, T. C., and Brumfield, R. T. 2013. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. Plos One 8:e54848 doi:10.1371/journal.pone.0054848.CrossRefGoogle Scholar
Norell, M. A. 1992. The effect of phylogeny on temporal diversity and evolutionary tempo. Pp. 89118in M. J. Novacek, and Q. D. Wheeler, eds. Extinction and Phylogeny. Columbia University Press, New York.Google Scholar
Olson, S. L. 1985. The fossil record of birds. Pp. 79252in D. S. Farmer, and A. King, eds. Avian Biology. Academic Press, Florida.CrossRefGoogle Scholar
Olson, S. L., and Hasegawa, Y. 1979. Fossil Counterparts of Giant Penguins from the North Pacific. Science 206:688689.CrossRefGoogle ScholarPubMed
Olson, S. L., and Hasegawa, Y.. 1996. A new genus and two new species of gigantic plotopteridae from Japan. Journal of Vertebrate Paleontology 16:742751.CrossRefGoogle Scholar
Omerod, S., and Tyler, S. 2005. Family Cinclidae. P. 895in J. del Hoyo, A. Elliott, and D. A. Christie, eds. Handbook of the Birds of the World Vol. 10. Cuckoo-shrikes to Thrushes. Lynx Edicions, Barcelona.Google Scholar
Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., and Pearse, W. 2011. Caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 0.5.Google Scholar
Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877884.CrossRefGoogle ScholarPubMed
Paradis, E., Claude, J., and Strimmer, K. 2004. Ape: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289.CrossRefGoogle ScholarPubMed
Parham, J. F., Donoghue, P. C. J., Bell, C. J., Calway, T. D., Head, J. J., Holroyd, P. A., Inoue, J. G., Irmis, R. B., Joyce, W. G., Ksepka, D. T., Patane, J. S. L., Smith, N. D., Tarver, J. E., van Tuinen, M., Yang, Z. H., Angielczyk, K. D., Greenwood, J. M., Hipsley, C. A., Jacobs, L., Makovicky, P. J., Muller, J., Smith, K. T., Theodor, J. M., Warnock, R. C. M., and Benton, M. J. 2012. Best Practices for Justifying Fossil Calibrations. Systematic Biology 61:346359.CrossRefGoogle ScholarPubMed
Pyron, R. A. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Systematic Biology 60:466481.CrossRefGoogle ScholarPubMed
R Development Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Rabosky, D. L. 2010. Extinction Rates Should Not Be Estimated from Molecular Phylogenies. Evolution 64:18161824.CrossRefGoogle ScholarPubMed
Rahn, H., Paganelli, C. V., and Ar, A. 1975. Relation of Avian Egg Weight to Body-Weight. Auk 92:750765.CrossRefGoogle Scholar
Revell, L. J. 2010. Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution 1:319329.CrossRefGoogle Scholar
Revell, L. J. 2012. phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3:217223.CrossRefGoogle Scholar
Serrano, F. J., Palmqvist, P., and Sanz, J. L. 2015. Multivariate analysis of neognath skeletal measurements: implications for body mass estimation in Mesozoic birds. Zoological Journal of the Linnean Society 173:929955.CrossRefGoogle Scholar
Shaul, S., and Graur, D. 2002. Playing chicken (Gallus gallus): methodological inconsistencies of molecular divergence date estimates due to secondary calibration points. Gene 300:5961.CrossRefGoogle ScholarPubMed
Simpson, G. G. 1946. Fossil Penguins. Bulletin of the American Museum of Natural History 87:199.Google Scholar
Slater, G. J., Harmon, L. J., and Alfaro, M. E. 2012. Integrating Fossils with Molecular Phylogenies Improves Inference of Trait Evolution. Evolution 66:39313944.CrossRefGoogle ScholarPubMed
Smith, F. A., and Lyons, S. K. 2013. Animal Body Size: Linking Pattern and Process Across Space. Time, and Taxonomic Group University of Chicago Press, Chicago.CrossRefGoogle Scholar
Smith, F. A., Lyons, S. K., Jones, K. E., Maurer, B. A., and Brown, J. H. 2013. The influence of flight on patterns of body size diversity and heritability. Pp. 187205in F. A. Smith, and S. K. Lyons, eds. Animal Body Size: Linking pattern and process across space time and taxonomic group. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Smith, N. A. 2011a. Systematics and evolution of extinct and extant Pan-Alcidae (Aves, Charadriiformes): combined phylogenetic analyses, divergence estimation, and paleoclimatic interactions. Ph.D. dissertation. University of Texas at Austin.Google Scholar
Smith, N. A. 2011b. Taxonomic revision and phylogenetic analysis of the flightless Mancallinae (Aves, Pan-Alcidae). ZooKeys 91:1116.CrossRefGoogle Scholar
Smith, N. A. 2013. A new species of auk (Charadriiformes, Pan-Alcidae) from the Miocene of Mexico. Condor 115:7783.CrossRefGoogle Scholar
Smith, N. A. 2014. The fossil record and phylogeny of the auklets (Pan-Alcidae, Aethiini). Journal of Systematic Palaeontology 12:217236.CrossRefGoogle Scholar
Smith, N. A. 2015. Sixteen vetted fossil calibrations for divergence dating of Charadriiformes (Aves, Neognathae). Palaeontologia Electronica 1470 18.1.4FC, 118.Google Scholar
Smith, N. A., and Clarke, J. A. 2011. An alphataxonomic revision of extinct and extant razorbills (Aves, Alcidae): a combined morphometric and phylogenetic approach. Ornithological Monographs 72:161.CrossRefGoogle Scholar
Smith, N. A., and Clarke, J. A.. 2012. Endocranial anatomy of the Charadriiformes: sensory system variation and the evolution of wing-propelled diving. Plos One 7:e49584 doi: 10.1371/journal.pone.0049584.CrossRefGoogle ScholarPubMed
Smith, N. A., and Clarke, J. A.. 2014. Osteological histology of the Pan-Alcidae (Aves, Charadriiformes): correlates of wing-propelled diving and flightlessness. The Anatomical Record 297:188199.CrossRefGoogle ScholarPubMed
Smith, N. A., and Clarke, J. A.. 2015. Systematics and evolution of the Pan-Alcidae (Aves, Charadriiformes). Journal of Avian Biology 46:125140.CrossRefGoogle Scholar
Stewart, J. R. 2007. An evolutionary study of some archaeologically significant avian taxa in the quaternary of the western Palaearctic. Archaeopress, Oxford.CrossRefGoogle Scholar
Storer, R. W. 1960. Evolution in the diving birds. Pp. 694707in G. Bergman, K. O. Donner, and L. Haartman, eds. International Ornithogical Congress. Tilgmannin Kirjapaino.Google Scholar
Warheit, K. I., and Lindberg, D. R. 1988. Interactions between seabirds and marine mammals through time: interference competition at breeding sites. Pp. 292328in J. Burger, ed. Seabirds and Other Marine Vertebrates: Competition, Predation, and Other Interactions. Columbia University Press, New York.Google Scholar
Whitlock, M. C., and Schluter, D. 2008. The analysis of biological data, 2nd Edition. Roberts and Company Publishers, Greenwood Village, Colorado.Google Scholar
Wiens, J. J. 2009. Paleontology, genomics, and combined-data phylogenetics: can molecular data improve phylogeny estimation for fossil taxa? Systematic Biology 58:8799.CrossRefGoogle ScholarPubMed
Wiens, J. J., Kuczynski, C. A., Townsend, T., Reeder, T. W., Mulcahy, D. G., and Sites, J. W. 2010. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology 59:674688.CrossRefGoogle ScholarPubMed
Wojczulanis-Jakubas, K., Jakubas, D., Welcker, J., Harding, A. M. A., Karnovsky, N. J., Kidawa, D., Steen, H., Stempniewicz, L., and Camphuysen, C. J. 2010. Body size variation of a high-Arctic seabird: the dovekie (Alle alle). Polar Biology 34:847854.CrossRefGoogle Scholar