Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T03:10:20.490Z Has data issue: false hasContentIssue false

Synthesis and structure of two-dimensional transition-metal dichalcogenides

Published online by Cambridge University Press:  13 July 2015

Yumeng Shi
Affiliation:
Physical Sciences and Engineering, King Abdullah University of Science and Technology, Saudi Arabia; yumeng.shi@kaust.edu.sa
Hua Zhang
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore; hzhang@ntu.edu.sg
Wen-Hao Chang
Affiliation:
Department of Electrophysics, National Chiao Tung University, Taiwan; whchang@mail.nctu.edu.tw
Hyeon Suk Shin
Affiliation:
Department of Chemistry and Department of Energy Engineering, Ulsan National Institute of Science and Technology, South Korea; shin@unist.ac.kr
Lain-Jong Li
Affiliation:
King Abdullah University of Science and Technology, Saudi Arabia; lance.li@kaust.edu.sa
Get access

Abstract

Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) exhibit unique electrical, optical, thermal, and mechanical properties, which enable them to be used as building blocks in compact and lightweight integrated electronic systems. The controllable and reliable synthesis of atomically thin TMDCs is essential for their practical application. Recent progress in large-area synthesis of monolayer TMDCs paves the way for practical production of various 2D TMDC layers. The intrinsic optical and electrical properties of monolayer TMDCs can be defined by stoichiometry during synthesis. By manipulating the lattice structure or layer stacking manner, it is possible to create atomically thin van der Waals materials with unique and unexplored physical properties. In this article, we review recent developments in the synthesis of TMDC monolayers, alloys, and heterostructures, which shine light on the design of novel TMDCs with desired functional properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chhowalla, M., Shin, H.S., Eda, G., Li, L.-J., Loh, K.P., Zhang, H., Nat. Chem. 5, 263 (2013).CrossRefGoogle Scholar
Huang, X., Zeng, Z., Zhang, H., Chem. Soc. Rev. 42, 1934 (2013).CrossRefGoogle Scholar
Ganatra, R., Zhang, Q., ACS Nano 8, 4074 (2014).CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A., Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A., Nat. Nanotechnol. 8, 497 (2013).CrossRefGoogle Scholar
Bertolazzi, S., Krasnozhon, D., Kis, A., ACS Nano 7, 3246 (2013).CrossRefGoogle Scholar
Wang, H., Yu, L., Lee, Y.-H., Shi, Y., Hsu, A., Chin, M.L., Li, L.-J., Dubey, M., Kong, J., Palacios, T., Nano Lett. 12, 4674 (2012).CrossRefGoogle Scholar
Ji, Q., Zhang, Y., Zhang, Y., Liu, Z., Chem. Soc. Rev., published online September 26, 2014, doi: 10.1039/C4CS00258J.CrossRefGoogle Scholar
Shi, Y., Li, H., Li, L.-J., Chem. Soc. Rev., published online October 20, 2014, doi: 10.1039/C4CS00256C.CrossRefGoogle Scholar
Stephenson, T., Li, Z., Olsen, B., Mitlin, D., Energy Environ. Sci. 7, 209 (2014).CrossRefGoogle Scholar
Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., Chhowalla, M., Nano Lett. 11, 5111 (2011).CrossRefGoogle Scholar
Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M., Chhowalla, M., ACS Nano 6, 7311 (2012).CrossRefGoogle Scholar
Qian, X., Liu, J., Fu, L., Li, J., Science 346, 1344 (2014).CrossRefGoogle Scholar
Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J., Ryu, S., ACS Nano 4, 2695 (2010).CrossRefGoogle Scholar
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F., Nano Lett. 10, 1271 (2010).CrossRefGoogle Scholar
Ly, T.H., Chiu, M.-H., Li, M.-Y., Zhao, J., Perello, D.J., Cichocka, M.O., Oh, H.M., Chae, S.H., Jeong, H.Y., Yao, F., Li, L.-J., Lee, Y.H., ACS Nano 8, 11401 (2014).CrossRefGoogle Scholar
Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I., Idrobo, J.-C., Nano Lett. 13, 2615 (2013).CrossRefGoogle Scholar
van der Zande, A.M., Huang, P.Y., Chenet, D.A., Berkelbach, T.C., You, Y., Lee, G.-H., Heinz, T.F., Reichman, D.R., Muller, D.A., Hone, J.C., Nat. Mater. 12, 554 (2013).CrossRefGoogle Scholar
Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei, S., Yakobson, B.I., Idrobo, J.-C., Ajayan, P.M., Lou, J., Nat. Mater. 12, 754 (2013).CrossRefGoogle Scholar
Ji, Q., Zhang, Y., Gao, T., Zhang, Y., Ma, D., Liu, M., Chen, Y., Qiao, X., Tan, P.-H., Kan, M., Feng, J., Sun, Q., Liu, Z., Nano Lett. 13, 3870 (2013).CrossRefGoogle Scholar
Zhang, X.-Q., Lin, C.-H., Tseng, Y.-W., Huang, K.-H., Lee, Y.-H., Nano Lett. 15, 410 (2014).CrossRefGoogle Scholar
Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., Zou, X., Ye, G., Vajtai, R., Yakobson, B.I., Terrones, H., Terrones, M., Tay, B.K., Lou, J., Pantelides, S.T., Liu, Z., Zhou, W., Ajayan, P.M., Nat. Mater. 13, 1135 (2014).CrossRefGoogle Scholar
Duan, X., Wang, C., Shaw, J.C., Cheng, R., Chen, Y., Li, H., Wu, X., Tang, Y., Zhang, Q., Pan, A., Jiang, J., Yu, R., Huang, Y., Duan, X., Nat. Nanotechnol. 9, 1024 (2014).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).CrossRefGoogle Scholar
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).CrossRefGoogle Scholar
Li, H., Wu, J., Yin, Z., Zhang, H., Acc. Chem. Res. 47, 1067 (2014).CrossRefGoogle Scholar
Li, H., Lu, G., Wang, Y., Yin, Z., Cong, C., He, Q., Wang, L., Ding, F., Yu, T., Zhang, H., Small 9, 1974 (2013).CrossRefGoogle ScholarPubMed
Li, H., Lu, G., Yin, Z., He, Q., Li, H., Zhang, Q., Zhang, H., Small 8, 682 (2012).CrossRefGoogle Scholar
Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.-Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., Nicolosi, V., Science 331, 568 (2011).CrossRefGoogle Scholar
Zhou, K.-G., Mao, N.-N., Wang, H.-X., Peng, Y., Zhang, H.-L., Angew. Chem. Int. Ed. 50, 10839 (2011).CrossRefGoogle Scholar
Smith, R.J., King, P.J., Lotya, M., Wirtz, C., Khan, U., De, S., O’Neill, A., Duesberg, G.S., Grunlan, J.C., Moriarty, G., Chen, J., Wang, J., Minett, A.I., Nicolosi, V., Coleman, J.N., Adv. Mater. 23, 3944 (2011).CrossRefGoogle Scholar
Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., Coleman, J.N., Science 340, 1420 (2013).CrossRefGoogle Scholar
Joensen, P., Frindt, R.F., Morrison, S.R., Mater. Res. Bull. 21, 457 (1986).CrossRefGoogle Scholar
Dines, M.B., Mater. Res. Bull. 10, 287 (1975).CrossRefGoogle Scholar
Benavente, E., Santa Ana, M.A., Mendizábal, F., González, G., Coord. Chem. Rev. 224, 87 (2002).CrossRefGoogle Scholar
Ramakrishna Matte, H.S.S., Gomathi, A., Manna, A.K., Late, D.J., Datta, R., Pati, S.K., Rao, C.N.R., Angew. Chem. Int. Ed. 49, 4059 (2010).CrossRefGoogle Scholar
Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D.C.B., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G., Chhowalla, M., Nat. Mater. 12, 850 (2013).CrossRefGoogle Scholar
Kappera, R., Voiry, D., Yalcin, S.E., Branch, B., Gupta, G., Mohite, A.D., Chhowalla, M., Nat. Mater. 13, 1128 (2014).CrossRefGoogle Scholar
Zeng, Z., Yin, Z., Huang, X., Li, H., He, Q., Lu, G., Boey, F., Zhang, H., Angew. Chem. Int. Ed. 50, 11093 (2011).CrossRefGoogle Scholar
Zeng, Z., Sun, T., Zhu, J., Huang, X., Yin, Z., Lu, G., Fan, Z., Yan, Q., Hng, H.H., Zhang, H., Angew. Chem. Int. Ed. 51, 9052 (2012).CrossRefGoogle Scholar
Zeng, Z., Tan, C., Huang, X., Bao, S., Zhang, H., Energy Environ. Sci. 7, 797 (2014).CrossRefGoogle Scholar
Liu, K.-K., Zhang, W., Lee, Y.-H., Lin, Y.-C., Chang, M.-T., Su, C.-Y., Chang, C.-S., Li, H., Shi, Y., Zhang, H., Nano Lett. 12, 1538 (2012).CrossRefGoogle Scholar
Lee, Y.-H., Zhang, X.-Q., Zhang, W., Chang, M.-T., Lin, C.-T., Chang, K.-D., Yu, Y.-C., Wang, J.T.-W., Chang, C.-S., Li, L.-J., Lin, T.-W., Adv. Mater. 24, 2320 (2012).CrossRefGoogle Scholar
Ling, X., Lee, Y.-H., Lin, Y., Fang, W., Yu, L., Dresselhaus, M.S., Kong, J., Nano Lett. 14, 464 (2014).CrossRefGoogle Scholar
Eichfeld, S.M., Hossain, L., Lin, Y.-C., Piasecki, A.F., Kupp, B., Birdwell, A.G., Burke, R.A., Lu, N., Peng, X., Li, J., Azcatl, A., McDonnell, S., Wallace, R.M., Kim, M.J., Mayer, T.S., Redwing, J.M., Robinson, J.A., ACS Nano 9, 2080 (2015).CrossRefGoogle Scholar
McDonnell, S., Addou, R., Buie, C., Wallace, R.M., Hinkle, C.L., ACS Nano 8, 2880 (2014).CrossRefGoogle Scholar
Chen, C.-H., Wu, C.-L., Pu, J., Chiu, M.-H., Kumar, P., Takenobu, T., Li, L.-J., 2D Mater. 1, 034001 (2014).CrossRefGoogle Scholar
Shi, Y., Huang, J.-K., Jin, L., Hsu, Y.-T., Yu, S.F., Li, L.-J., Yang, H.Y., Sci. Rep. 3, 1839 (2013).CrossRefGoogle Scholar
Shi, Y., Kim, K.K., Reina, A., Hofmann, M., Li, L.-J., Kong, J., ACS Nano 4, 2689 (2010).CrossRefGoogle Scholar
Mouri, S., Miyauchi, Y., Matsuda, K., Nano Lett. 13, 5944 (2013).CrossRefGoogle Scholar
Dolui, K., Rungger, I., Das Pemmaraju, C., Sanvito, S., Phys. Rev. B: Condens. Matter 88, 075420 (2013).CrossRefGoogle Scholar
Suh, J., Park, T.-E., Lin, D.-Y., Fu, D., Park, J., Jung, H.J., Chen, Y., Ko, C., Jang, C., Sun, Y., Sinclair, R., Chang, J., Tongay, S., Wu, J., Nano Lett. 14, 6976 (2014).CrossRefGoogle Scholar
Li, H., Duan, X., Wu, X., Zhuang, X., Zhou, H., Zhang, Q., Zhu, X., Hu, W., Ren, P., Guo, P., Ma, L., Fan, X., Wang, X., Xu, J., Pan, A., Duan, X., J. Am. Chem. Soc. 136, 3756 (2014).CrossRefGoogle Scholar
Gong, Y., Liu, Z., Lupini, A.R., Shi, G., Lin, J., Najmaei, S., Lin, Z., Elías, A.L., Berkdemir, A., You, G., Terrones, H., Terrones, M., Vajtai, R., Pantelides, S.T., Pennycook, S.J., Lou, J., Zhou, W., Ajayan, P.M., Nano Lett. 14, 442 (2013).CrossRefGoogle Scholar
Su, S.-H., Hsu, W.-T., Hsu, C.-L., Chen, C.-H., Chiu, M.-H., Lin, Y.-C., Chang, W.-H., Suenaga, K., He, J.-H., Li, L.-J., Front. Energy Res. 2, 27 (2014).CrossRefGoogle Scholar
Li, B., Huang, L., Zhong, M., Huo, N., Li, Y., Yang, S., Fan, C., Yang, J., Hu, W., Wei, Z., Li, J., ACS Nano 9, 1257 (2015).CrossRefGoogle Scholar
Geim, A.K., Grigorieva, I.V., Nature 499, 419 (2013).CrossRefGoogle Scholar
Britnell, L., Ribeiro, R.M., Eckmann, A., Jalil, R., Belle, B.D., Mishchenko, A., Kim, Y.-J., Gorbachev, R.V., Georgiou, T., Morozov, S.V., Grigorenko, A.N., Geim, A.K., Casiraghi, C., Neto, A.H.C., Novoselov, K.S., Science 340, 1311 (2013).CrossRefGoogle Scholar
Tsai, M.-L., Su, S.-H., Chang, J.-K., Tsai, D.-S., Chen, C.-H., Wu, C.-I., Li, L.-J., Chen, L.-J., He, J.-H., ACS Nano 8, 8317 (2014).CrossRefGoogle Scholar
Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., Katsnelson, M.I., Eaves, L., Morozov, S.V., Peres, N.M.R., Leist, J., Geim, A.K., Novoselov, K.S., Ponomarenko, L.A., Science 335, 947 (2012).CrossRefGoogle Scholar
Loan, P.T.K., Zhang, W., Lin, C.-T., Wei, K.-H., Li, L.-J., Chen, C.-H., Adv. Mater. 26, 4838 (2014).CrossRefGoogle Scholar
Chang, Y.-H., Wu, F.-Y., Chen, T.-Y., Hsu, C.-L., Chen, C.-H., Wiryo, F., Wei, K.-H., Chiang, C.-Y., Li, L.-J., Small 10, 895 (2014).CrossRefGoogle Scholar
Smith, A.J., Chang, Y.-H., Raidongia, K., Chen, T.-Y., Li, L.-J., Huang, J., Adv. Energy Mater. 4, 1400398 (2014).CrossRefGoogle Scholar
Shi, Y., Wang, Y., Wong, J.I., Tan, A.Y.S., Hsu, C.-L., Li, L.-J., Lu, Y.-C., Yang, H.Y., Sci. Rep. 3, 2169 (2013).CrossRefGoogle Scholar
Cao, X., Shi, Y., Shi, W., Rui, X., Yan, Q., Kong, J., Zhang, H., Small 9, 3433 (2013).CrossRefGoogle Scholar
Kang, J., Tongay, S., Zhou, J., Li, J., Wu, J., Appl. Phys. Lett. 102, 012111 (2013).CrossRefGoogle Scholar
Gong, C., Zhang, H., Wang, W., Colombo, L., Wallace, R.M., Cho, K., Appl. Phys. Lett. 103, 053513 (2013).CrossRefGoogle Scholar
Terrones, H., López-Urías, F., Terrones, M., Sci. Rep. 3, 1549 (2013).CrossRefGoogle Scholar
Fang, H., Battaglia, C., Carraro, C., Nemsak, S., Ozdol, B., Kang, J.S., Bechtel, H.A., Desai, S.B., Kronast, F., Unal, A.A., Conti, G., Conlon, C., Palsson, G.K., Martin, M.C., Minor, A.M., Fadley, C.S., Yablonovitch, E., Maboudian, R., Javey, A., Proc. Natl. Acad. Sci. U.S.A. 111, 6198 (2014).CrossRefGoogle Scholar
Chiu, M.-H., Li, M.-Y., Zhang, W., Hsu, W.-T., Chang, W.-H., Terrones, M., Terrones, H., Li, L.-J., ACS Nano 8, 9649 (2014).CrossRefGoogle Scholar
Lee, C.-H., Lee, G.-H., van der Zande, A.M., Chen, W., Li, Y., Han, M., Cui, X., Arefe, G., Nuckolls, C., Heinz, T.F., Guo, J., Hone, J., Kim, P., Nat. Nanotechnol. 9, 676 (2014).CrossRefGoogle Scholar
Tongay, S., Fan, W., Kang, J., Park, J., Koldemir, U., Suh, J., Narang, D.S., Liu, K., Ji, J., Li, J., Sinclair, R., Wu, J., Nano Lett. 14, 3185 (2014).CrossRefGoogle Scholar
Rivera, P., Schaibley, J.R., Jones, A.M., Ross, J.S., Wu, S., Aivazian, G., Klement, P., Seyler, K., Clark, G., Ghimire, N.J., Yan, J., Mandrus, D.G., Yao, W., Xu, X., Nat. Commun. 6, 6242 (2015).CrossRefGoogle Scholar
Huang, C., Wu, S., Sanchez, A.M., Peters, J.J.P., Beanland, R., Ross, J.S., Rivera, P., Yao, W., Cobden, D.H., Xu, X., Nat. Mater. 13, 1096 (2014).CrossRefGoogle Scholar
Shi, Y., Hamsen, C., Jia, X., Kim, K.K., Reina, A., Hofmann, M., Hsu, A.L., Zhang, K., Li, H., Juang, Z.-Y., Dresselhaus, M.S., Li, L.-J., Kong, J., Nano Lett. 10, 4134 (2010).CrossRefGoogle Scholar
Mak, K.F., He, K., Shan, J., Heinz, T.F., Nat. Nanotechnol. 7, 494 (2012).CrossRefGoogle Scholar
Lee, G.-H., Yu, Y.-J., Cui, X., Petrone, N., Lee, C.-H., Choi, M.S., Lee, D.-Y., Lee, C., Yoo, W.J., Watanabe, K., Taniguchi, T., Nuckolls, C., Kim, P., Hone, J., ACS Nano 7, 7931 (2013).CrossRefGoogle Scholar
Shi, Y., Zhou, W., Lu, A.-Y., Fang, W., Lee, Y.-H., Hsu, A.L., Kim, S.M., Kim, K.K., Yang, H.Y., Li, L.-J., Idrobo, J.-C., Kong, J., Nano Lett. 12, 2784 (2012).CrossRefGoogle Scholar
Ma, Y., Dai, Y., Guo, M., Niu, C., Huang, B., Nanoscale 3, 3883 (2011).CrossRefGoogle ScholarPubMed
Lin, Y.-C., Lu, N., Perea-Lopez, N., Li, J., Lin, Z., Peng, X., Lee, C.H., Sun, C., Calderin, L., Browning, P.N., Bresnehan, M.S., Kim, M.J., Mayer, T.S., Terrones, M., Robinson, J.A., ACS Nano 8, 3715 (2014).CrossRefGoogle Scholar
Lin, Y.-C., Chang, C.-Y.S., Ghosh, R.K., Li, J., Zhu, H., Addou, R., Diaconescu, B., Ohta, T., Peng, X., Lu, N., Kim, M.J., Robinson, J.T., Wallace, R.M., Mayer, T.S., Datta, S., Li, L.-J., Robinson, J.A., Nano Lett. 14, 6936 (2014).CrossRefGoogle Scholar
Lin, M.-Y., Chang, C.-E., Wang, C.-H., Su, C.-F., Chen, C., Lee, S.-C., Lin, S.-Y., Appl. Phys. Lett. 105, 073501 (2014).CrossRefGoogle Scholar
Okada, M., Sawazaki, T., Watanabe, K., Taniguch, T., Hibino, H., Shinohara, H., Kitaura, R., ACS Nano 8, 8273 (2014).CrossRefGoogle Scholar
Zheng, J., Zhang, H., Dong, S., Liu, Y., Nai, C.T., Shin, H.S., Jeong, H.Y., Liu, B., Loh, K.P., Nat. Commun. 5, 2995 (2014).CrossRefGoogle Scholar