Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T14:47:34.542Z Has data issue: false hasContentIssue false

Second language learning success revealed by brain networks*

Published online by Cambridge University Press:  22 June 2015

PING LI*
Affiliation:
Pennsylvania State University
ANGELA GRANT
Affiliation:
Pennsylvania State University
*
Address for correspondence: Ping Li, Department of Psychology and Center for Brain, Behavior, and Cognition, Pennsylvania State University, University Park, PA, 16802USApul8@psu.edu

Abstract

A recent movement in cognitive neuroscience is the study of brain networks through functional and effective connectivity. The brain networks approach has already found its influences in the study of the neurobiology of language, but has yet to impact research in the neurocognition of bilingualism and second language. In this article, we briefly review some preliminary evidence in this emerging field and suggest that the understanding of the dynamic changes in brain networks enables us to capture second language learning success, thereby providing new insights into the neural bases of individual differences, neuroplasticity, and bilingualism.

Type
Perspective
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

We thank Jubin Abutalebi, Shin-Yi Fang, Jennifer Legault, Jing Yang, and members of the Brain, Language, and Computation Lab for comments and suggestions on an earlier draft of this manuscript. This work was supported by grants from the National Science Foundation (BCS-1157220, BCS-1338946).

References

Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242275.CrossRefGoogle Scholar
Baddeley, A. (2003a). Working Memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829839.CrossRefGoogle ScholarPubMed
Baddeley, A. (2003b). Working memory and language: an overview. Journal of Communication Disorders, 36, 189208.CrossRefGoogle ScholarPubMed
Baddeley, A. D., Gathercole, S. E., & Papagno, C. (1998). The phonological loop as a language learning device, Psychological Review, 105, 158173.CrossRefGoogle ScholarPubMed
Bassett, D. S., & Gazzaniga, M. S. (2011). Understanding complexity in the human brain. Trends in Cognitive Sciences, 15, 200209.CrossRefGoogle ScholarPubMed
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences, 108, 76417646.CrossRefGoogle ScholarPubMed
Bates, E. (1999). Plasticity, Localization and Language Development. In Broman, S. H. & Fletcher, J. M. (eds.), The changing nervous system: Neurobehavioral consequences of early brain disorders, pp. 214253. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Sciences, 14, 277–90.CrossRefGoogle ScholarPubMed
Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186198.CrossRefGoogle ScholarPubMed
Della Rosa, P. A., Videsott, G., Borsa, V. M., Canini, M., Weekes, B. S., Franceschini, R., & Abutalebi, J. (2013). A neural interactive location for multilingual talent. Cortex, 49, 605608.CrossRefGoogle ScholarPubMed
Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness. Cambridge, MA: MIT Press.Google Scholar
Fedorenko, E., & Thompson-Schill, S. L. (2014). Reworking the language network. Trends in Cognitive Sciences, 18, 120–6.CrossRefGoogle ScholarPubMed
Fodor, J. A. (1983). The Modularity of Mind. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Friston, K. J. (2009). Modalities, modes, and models in functional neuroimaging. Science, 326, 399403.CrossRefGoogle ScholarPubMed
García-Pentón, L., Pérez Fernández, A., Iturria-Medina, Y., Gillon-Dowens, M., & Carreiras, M. (2014). Anatomical connectivity changes in the bilingual brain. NeuroImage, 84, 495504.CrossRefGoogle ScholarPubMed
Gates, K. M., & Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63, 310319.CrossRefGoogle ScholarPubMed
Gates, K. M., Molenaar, P., Hillary, F. G., Ram, N., & Rovine, M. J. (2010). Automatic search for fMRI connectivity mapping: an alternative to Granger causality testing using formal equivalences among SEM path modeling, VAR, and unified SEM. NeuroImage, 50, 11181125.CrossRefGoogle ScholarPubMed
Gates, K. M., Molenaar, P. C. M., Hillary, F. G., & Slobounov, S. (2011). Extended unified SEM approach for modeling event-related fMRI data. NeuroImage, 54, 11511158.CrossRefGoogle ScholarPubMed
Golestani, N., Molko, N., Dehaene, S., LeBihan, D., & Pallier, C. (2007). Brain structure predicts the learning of foreign speech sounds. Cerebral Cortex, 17, 575–82.CrossRefGoogle ScholarPubMed
Golestani, N., & Pallier, C. (2007). Anatomical correlates of foreign speech sound production. Cerebral Cortex, 17, 929934.CrossRefGoogle ScholarPubMed
Grant, A., Fang, S., & Li, P. Second language lexical development and cognitive control: A longitudinal fMRI study. Brain and Language, 144, 3547.CrossRefGoogle Scholar
Hernandez, A. E. (2013). The Bilingual Brain. New York, NY: Oxford University Press.CrossRefGoogle ScholarPubMed
Hernandez, A. E., & Li, P. (2007). Age of Acquisition: Its Neural and Computational Mechanisms. Psychological Bulletin, 133, 638650.CrossRefGoogle ScholarPubMed
Li, P. (2015). Bilingualism as a dynamic process. In MacWhinney, B. & O'Grady, W. (eds.), Handbook of language emergence, pp. 511536. Malden, MA: John Wiley & Sons, Inc.CrossRefGoogle Scholar
Li, P., & Green, D. (2007). Neurocognitive approaches to bilingualism: Asian languages. A special issue of Bilingualism: Language and Cognition, 10, 117210.CrossRefGoogle Scholar
Li, P., Legault, J., & Litcofsky, K. A. (2014). Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex, 58, 301324.CrossRefGoogle ScholarPubMed
Li, P., & Zhao, X. (2013). Self-organizing map models of language acquisition. Frontiers in Psychology, 4, doi: 10.3389/fpsyg.2013.00828 CrossRefGoogle ScholarPubMed
Li, P., & Zhao, X. (2015). Computational modeling of bilingual language acquisition and processing: conceptual and methodological considerations. In Schwieter, J. W. (ed.), The Cambridge handbook of bilingual processing. Cambridge, UK: Cambridge University Press.Google Scholar
McClelland, J. L., Rumelhart, D. E., & PDP Research Group. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: The MIT Press.Google Scholar
Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences, 15, 124.CrossRefGoogle ScholarPubMed
Miyake, A., & Friedman, N. (1998). Individual differences in second language proficiency: Working memory as language aptitude. In Healy, A. & Bourne, L. (eds.), Foreign language learning: Psycholinguistics studies on training and retention, pp. 339364. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
O'Brien, I., Segalowitz, N., Collentine, J., & Freed, B. (2006). Phonological memory and lexical, narrative, and grammatical skills in second language oral production by adult learners. Applied Psycholinguistics, 27, 377402.CrossRefGoogle Scholar
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676682.CrossRefGoogle ScholarPubMed
Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6, 855863.CrossRefGoogle Scholar
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52, 10591069.CrossRefGoogle ScholarPubMed
Rumelhart, D. E. (1989). The Architecture of Mind: A Connectionist Approach. In Posner, M. (ed.), Foundations of cognitive science, pp. 298312. Cambridge, MA: MIT Press.Google Scholar
Sheppard, J. P., Wang, J. P., & Wong, P. C. (2012). Large-scale cortical network properties predict future sound-to-word learning success. Journal of Cognitive Neuroscience, 24, 10871103.CrossRefGoogle ScholarPubMed
Sporns, O. (2011). Networks of the brain. Cambridge, MA: MIT Press.Google Scholar
Stein, M., Winkler, C., Kaiser, A. & Dierks, T. (2014). Structural brain changes related to bilingualism: Does immersion make a difference? Frontiers in Psychology, 5: 1116. doi: 10.3389/fpsyg.2014.01116.CrossRefGoogle Scholar
Tu, L., Wang, J., Abutalebi, J., Jiang, B., Pan, X., Li, M., Gao, W., Yang, Y., Liang, B., Lu, Z., & Huang, R. (2015). Language exposure induced neuroplasticity in the bilingual brain: A follow-up fMRI study. Cortex, 64, 819.CrossRefGoogle Scholar
Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. The Journal of Neuroscience, 31, 1857818589.CrossRefGoogle ScholarPubMed
Ventura-Campos, N., Sanjuán, A., González, J., Palomar-García, M.-Á., Rodríguez-Pujadas, A., Sebastián- Gallés, N., Deco, G., & Ávila, C. (2013). Spontaneous brain activity predicts learning ability of foreign sounds. The Journal of Neuroscience, 33, 9295–305.CrossRefGoogle ScholarPubMed
Veroude, K., Norris, D. G., Shumskaya, E., Gullberg, M., & Indefrey, P. (2010). Functional connectivity between brain regions involved in learning words of a new language. Brain and Language, 113, 2127.CrossRefGoogle ScholarPubMed
Wang, Y., Sereno, J. A., Jongman, A., & Hirsch, J. (2003). fMRI evidence for cortical modification during learning of Mandarin lexical tone. Journal of Cognitive Neuroscience, 15, 10191027.CrossRefGoogle ScholarPubMed
Wong, P. C., Perrachione, T. K., & Parrish, T. B. (2007). Neural characteristics of successful and less successful speech and word learning in adults, Human Brain Mapping, 28, 10, 9951006.CrossRefGoogle ScholarPubMed
Xiang, H., Dediu, D., Roberts, L., Norris, D. G., & Hagoort, P. (2012). Language aptitude, working memory, and IQ in the perisylvian language network. Language Learning, 62, 110130.CrossRefGoogle Scholar
Yang, J., & Li, P. (2012). Brain networks of explicit and implicit learning. PLoS One, 7, e42993. doi:10.1371/journal.pone.0042993 CrossRefGoogle ScholarPubMed
Yang, J., Gates, K., Molenaar, P., & Li, P. (2015). Neural changes underlying successful second language word learning: An fMRI study. Journal of Neurolinguistics, 33, 2949.CrossRefGoogle Scholar
Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. NeuroImage, 53, 11971207.CrossRefGoogle ScholarPubMed
Zhang, L., Xi, J., Xu, G., Shu, H., Wang, X., & Li, P. (2011). Cortical dynamics of acoustic and phonological processing in speech perception. PLoS One, 6, e20963. doi:10.1371/journal.pone.0020963.CrossRefGoogle ScholarPubMed