Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T08:54:42.583Z Has data issue: false hasContentIssue false

Emotional response inhibition in children with attention-deficit/hyperactivity disorder: neural and behavioural data

Published online by Cambridge University Press:  24 February 2015

S. López-Martín*
Affiliation:
Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid 28049, Spain
J. Albert
Affiliation:
Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid 28049, Spain Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid 28040, Spain
A. Fernández-Jaén
Affiliation:
Unidad de Neurología Infantil, Hospital Universitario Quirón, Madrid 28223, Spain
L. Carretié
Affiliation:
Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid 28049, Spain
*
*Address for correspondence: S. López-Martín, Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid 28049, Spain. (Email: sara.lopez@uam.es)

Abstract

Background

Although both emotion and response inhibition are thought to be important in attention-deficit/hyperactivity disorder (ADHD), little is known about the neural mechanisms that underlie the interaction between these two processes in patients with this disorder. This study aimed at examining how emotional contexts affect inhibitory control in children with ADHD.

Method

A total of 24 ADHD children and 24 healthy comparison subjects performed a modified go/no-go task during three different emotionally laden contexts: negative, neutral and positive. To explore the timing and the underlying neural substrates of emotion-modulated response inhibition, event-related potentials were measured and further analysed both at the scalp and at the voxel level.

Results

Patients with ADHD showed greater activation of inhibition-related neural mechanisms (i.e. no-go P3 amplitudes and orbitofrontal cortex activity) to maintain a similar level of performance as healthy comparison subjects, especially during the emotionally arousing contexts (negative and positive).

Conclusions

This study provides plausible neural mechanisms for the difficulty that ADHD children have in controlling their behaviour in highly emotional situations. Such emotional contexts might increase the need for top-down inhibitory control and put ADHD children at greater risk for impulsive behaviours and emotional dysregulation.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, J, López-Martín, S, Carretié, L (2010). Emotional context modulates response inhibition: neural and behavioral data. NeuroImage 49, 914921.CrossRefGoogle ScholarPubMed
Albert, J, López-Martín, S, Fernández-Jaén, A, Carretié, L (2008). Emotional alterations in attention deficit hyperactivity disorder: existing data and open issues [in Spanish]. Revista de Neurología 47, 3945.Google Scholar
Albert, J, López-Martín, S, Hinojosa, JA, Carretié, L (2013). Spatiotemporal characterization of response inhibition. NeuroImage 76, 272281.Google Scholar
Albert, J, López-Martín, S, Tapia, M, Montoya, D, Carretié, L (2012). The role of the anterior cingulate cortex in emotional response inhibition. Human Brain Mapping 33, 21472160.Google Scholar
APA (2000). Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR. American Psychiatric Association: Washington, DC.Google Scholar
Banaschewski, T, Brandeis, D, Heinrich, H, Albrecht, B, Bruner, E, Rothenberger, A (2004). Questioning inhibitory control as the specific deficit of ADHD: evidence from brain electrical activity. Journal of Neural Transmission 111, 841864.Google Scholar
Banks, SJ, Eddy, KT, Angstadt, M, Nathan, PJ, Phan, KL (2007). Amygdala–frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience 2, 303312.CrossRefGoogle ScholarPubMed
Bokura, H, Yamaguchi, S, Kobayashi, S (2001). Electrophysiological correlates for response inhibition in a Go/NoGo task. Clinical Neurophysiology 112, 22242232.CrossRefGoogle Scholar
Booth, JR, Burman, DD, Meyer, JR, Lei, Z, Trommer, BL, Davenport, ND, Li, W, Parrish, TB, Gitelman, DR, Mesulam, MM (2005). Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). Journal of Child Psychology and Psychiatry 46, 94111.CrossRefGoogle ScholarPubMed
Botvinick, MM, Cohen, JD, Carter, CS (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences 8, 539546.Google Scholar
Brandeis, D, van Leeuwen, TH, Rubia, K, Vitacco, D, Steger, J, Pascual-Marqui, RD, Steinhausen, H (1998). Neuroelectric mapping reveals precursor of stop failures in children with attention deficits. Behavioural Brain Research 94, 111125.Google Scholar
Braver, TS, Barch, DM, Gray, JR, Molfese, DL, Snyder, A (2001). Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cerebral Cortex 11, 825836.CrossRefGoogle ScholarPubMed
Brotman, MA, Rich, BA, Guyer, AE, Lunsford, JR, Horsey, SE, Reising, MM, Thomas, LA, Fromm, SJ, Towbin, K, Pine, DS, Leibenluft, E (2010). Amygdala activation during emotion processing of neutral faces in children with severe mood dysregulation versus ADHD or bipolar disorder. American Journal of Psychiatry 167, 6169.Google Scholar
Carmona, S, Vilarroya, O, Bielsa, A, Trèmols, V, Soliva, JC, Rovira, M, Tomàs, J, Raheb, C, Gispert, JD, Batlle, S, Bulbena, A (2005). Global and regional gray matter reductions in ADHD: a voxel-based morphometric study. Neuroscience Letters 389, 8893.CrossRefGoogle ScholarPubMed
Carretié, L, Hinojosa, JA, Martín-Loeches, M, Mercado, F, Tapia, M (2004 a). Automatic attention to emotional stimuli: neural correlates. Human Brain Mapping 22, 290299.Google Scholar
Carretié, L, Tapia, M, Mercado, F, Albert, J, López-Martin, S, De La Serna, JM (2004 b). Voltage-based versus factor score-based source localization analyses of electrophysiological brain activity: a comparison. Brain Topography 17, 109115.CrossRefGoogle ScholarPubMed
Dickstein, SG, Bannon, K, Castellanos, FX, Milham, MP (2006). The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. Journal of Child Psychology and Psychiatry 47, 10511062.Google Scholar
Dien, J (2010). Evaluating two-step PCA of ERP data with Geomin, Infomax, Oblimin, Promax, and Varimax rotations. Psychophysiology 47, 170183.CrossRefGoogle ScholarPubMed
Dien, J (2012). Applying principal components analysis to event-related potentials: a tutorial. Developmental Neuropsychology 37, 497517.CrossRefGoogle ScholarPubMed
Dimoska, A, Johnstone, SJ, Barry, RJ, Clarke, AR (2003). Inhibitory motor control in children with attention-deficit/hyperactivity disorder: event-related potentials in the stop-signal paradigm. Biological Psychiatry 54, 13451354.CrossRefGoogle ScholarPubMed
Donkers, FCL, Van Boxtel, GJM (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition 56, 165176.CrossRefGoogle Scholar
DuPaul, GJ, Power, TJ, Anastopoulos, AD, Reid, R (1998). ADHD Rating Scale–IV: Checklists, Norms, and Clinical Interpretation. Guilford Press: New York.Google Scholar
Durston, S, Tottenham, NT, Thomas, KM, Davidson, MC, Eigsti, I-M, Yang, Y, Ulug, AM, Casey, B (2003). Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry 53, 871878.Google Scholar
Elliott, R, Rubinsztein, JS, Sahakian, BJ, Dolan, RJ (2000). Selective attention to emotional stimuli in a verbal go/no-go task: an fMRI study. Neuroreport 11, 17391744.CrossRefGoogle Scholar
Enriquez-Geppert, S, Konrad, C, Pantev, C, Huster, RJ (2010). Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task. NeuroImage 51, 877887.Google Scholar
Etkin, A, Egner, T, Kalisch, R (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences 15, 8593.Google Scholar
Falkenstein, M, Hoormann, J, Hohnsbein, J (1999). ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychologica 101, 267291.Google Scholar
Fallgatter, AJ, Ehlis, A-C, Seifert, J, Strik, WK, Scheuerpflug, P, Zillessen, KE, Herrmann, MJ, Warnke, A (2004). Altered response control and anterior cingulate function in attention-deficit/hyperactivity disorder boys. Clinical Neurophysiology 115, 973981.Google Scholar
Fernández-Jaén, A, López-Martín, S, Albert, J, Fernández-Mayoralas, DM, Fernández-Perrone, AL, Tapia, DQ, Calleja-Pérez, B (2014). Cortical thinning of temporal pole and orbitofrontal cortex in medication-naïve children and adolescents with ADHD. Psychiatry Research: NeuroImaging 224, 813.Google Scholar
Folstein, JR, Van Petten, C (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45, 152170.CrossRefGoogle ScholarPubMed
Garavan, H, Ross, TJ, Murphy, K, Roche, RAP, Stein, EA (2002). Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. NeuroImage 17, 18201829.CrossRefGoogle ScholarPubMed
Gratton, G, Coles, MG, Donchin, E (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology 5, 468484.Google Scholar
Hahn, A, Stein, P, Windischberger, C, Weissenbacher, A, Spindelegger, C, Moser, E, Kasper, S, Lanzenberger, R (2011). Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. NeuroImage 56, 881889.Google Scholar
Hart, H, Radua, J, Nakao, T, Mataix-Cols, D, Rubia, K (2013). Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry 70, 185198.Google Scholar
Herrmann, MJ, Schreppel, T, Biehl, SC, Jacob, C, Heine, M, Boreatti-Hümmer, A, Mühlberger, A, Fallgatter, AJ (2009). Emotional deficits in adult ADHD patients: an ERP study. Social Cognitive and Affective Neuroscience 4, 340345.Google Scholar
Horn, JL (1965). A rationale and test for the number of factors in factor analysis. Psychometrik 30, 179185.Google Scholar
Horn, NR, Dolan, M, Elliott, R, Deakin, JFW, Woodruff, PWR (2003). Response inhibition and impulsivity: an fMRI study. Neuropsychologia 41, 19591966.Google Scholar
Huebner, T, Vloet, TD, Marx, I, Konrad, K, Fink, GR, Herpertz, SC, Herpertz-Dahlmann, B (2008). Morphometric brain abnormalities in boys with conduct disorder. Journal of the American Academy of Child and Adolescent Psychiatry 47, 540547.CrossRefGoogle ScholarPubMed
Huster, RJ, Enriquez-Geppert, S, Lavallee, CF, Falkenstein, M, Herrmann, CS (2013). Electroencephalography of response inhibition tasks: functional networks and cognitive contributions. International Journal of Psychophysiology 87, 217233.Google Scholar
Johnstone, SJ, Barry, RJ, Clarke, AR (2013). Ten years on: a follow-up review of ERP research in attention-deficit/hyperactivity disorder. Clinical Neurophysiology 124, 644657.CrossRefGoogle ScholarPubMed
Kaufman, J, Birmaher, B, Brent, D, Rao, U, Flynn, C, Moreci, P, Williamson, D, Ryan, N (1997). Schedule for affective disorders and schizophrenia for school-age children – present and lifetime version (K-SADS-PL): initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry 36, 980988.CrossRefGoogle ScholarPubMed
Kiefer, M, Marzinzik, F, Weisbrod, M, Scherg, M, Spitzer, M (1998). The time course of brain activations during response inhibition: evidence from event-related potentials in a go/no go task. Neuroreport 9, 765770.Google Scholar
Lang, PJ, Bradley, MM, Cuthbert, BN (2005). International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual. Technical report A-6. University of Florida: Gainesville, FL.Google Scholar
Lang, PJ, Greenwald, MK, Bradley, MM, Hamm, AO (1993). Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261273.CrossRefGoogle ScholarPubMed
Lee, H, Heller, AS, Van Reekum, CM, Nelson, B, Davidson, RJ (2012). Amygdala prefrontal coupling underlies individual differences in emotion regulation. NeuroImage 62, 15751581.CrossRefGoogle ScholarPubMed
Liotti, M, Pliszka, SR, Perez, R, Luus, B, Glahn, D, Semrud-Clikeman, M (2007). Electrophysiological correlates of response inhibition in children and adolescents with ADHD: influence of gender, age, and previous treatment history. Psychophysiology 44, 936948.Google Scholar
López-Martín, S, Albert, J, Fernández-Jaén, A, Carretié, L (2013). Emotional distraction in boys with ADHD: neural and behavioral correlates. Brain and Cognition 1, 1020.CrossRefGoogle Scholar
Lorente de Nó, R (1947). Action potential of the motoneurons of the hypoglossus nucleus. Journal of Cellular and Comparative Physiology 29, 207287.Google Scholar
Maier, SJ, Szalkowski, A, Kamphausen, S, Feige, B, Perlov, E, Kalisch, R, Jacob, GA, Philipsen, A, Tüscher, O, Tebartz van Elst, L (2014). Altered cingulate and amygdala response towards threat and safe cues in attention deficit hyperactivity disorder. Psychological Medicine 44, 8598.CrossRefGoogle ScholarPubMed
Marx, I, Domes, G, Havenstein, C, Berger, C, Schulze, L, Herpertz, SC (2011). Enhanced emotional interference on working memory performance in adults with ADHD. World Journal of Biological Psychiatry 12, 7075.CrossRefGoogle ScholarPubMed
Millisecond Software (2006). Inquisit 2.0.60616 [Computer software]. Millisecond Software: Seattle, WA.Google Scholar
Mulert, C, Jäger, L, Schmitt, R, Bussfeld, P, Pogarell, O, Möller, H-J, Juckel, G, Hegerl, U (2004). Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. NeuroImage 22, 8394.Google Scholar
Nichols, TE, Holmes, AP (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping 15, 125.CrossRefGoogle ScholarPubMed
Nieuwenhuis, S, Yeung, N, Van den Wildenberg, W, Ridderinkhof, KR (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cognitive, Affective Behavioral Neuroscience 3, 1726.Google Scholar
Nigg, JT, Casey, BJ (2005). An integrative theory of attention-deficit/hyperactivity disorder based on the cognitive and affective neurosciences. Development and Psychopathology 17, 785806.Google Scholar
Nikolas, MA, Nigg, JT (2013). Neuropsychological performance and attention-deficit hyperactivity disorder subtypes and symptom dimensions. Neuropsychology 27, 107.Google Scholar
Ochsner, KN, Bunge, SA, Gross, JJ, Gabrieli, JDE (2002). Rethinking feelings: an fMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience 14, 12151229.Google Scholar
Paradiso, S, Chemerinski, E, Yazici, KM, Tartaro, A, Robinson, RG (1999). Frontal lobe syndrome reassessed: comparison of patients with lateral or medial frontal brain damage. Journal of Neurology, Neurosurgery and Psychiatry 67, 664667.Google Scholar
Pascual-Marqui, RD (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology 24 (Suppl. D), 512.Google Scholar
Passarotti, AM, Sweeney, JA, Pavuluri, MN (2010 a). Differential engagement of cognitive and affective neural systems in pediatric bipolar disorder and attention deficit hyperactivity disorder. Journal of the International Neuropsychological Society 16, 106117.Google Scholar
Passarotti, AM, Sweeney, JA, Pavuluri, MN (2010 b). Emotion processing influences working memory circuits in pediatric bipolar disorder and attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry 49, 10641080.Google Scholar
Pizzagalli, DA, Oakes, TR, Fox, AS, Chung, MK, Larson, CL, Abercrombie, HC, Schaefer, SM, Benca, RM, Davidson, RJ (2004). Functional but not structural subgenual prefrontal cortex abnormalities in melancholia. Molecular Psychiatry 9, 325, 393405.CrossRefGoogle Scholar
Plessen, KJ, Bansal, R, Zhu, H, Whiteman, R, Quackenbush, GA, Martin, L, Durkin, K, Royal, J, Hugdahl, K, Peterson, BS (2008). Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder. Archives of General Psychiatry 63, 795807.Google Scholar
Posner, J, Maia, TV, Fair, D, Peterson, BS, Sonuga-Barke, EJ, Nagel, BJ (2011 a). The attenuation of dysfunctional emotional processing with stimulant medication: an fMRI study of adolescents with ADHD. Psychiatry Research: Neuroimaging 193, 151160.Google Scholar
Posner, J, Nagel, BJ, Maia, TV, Mechling, A, Oh, M, Wang, Z, Peterson, BS (2011 b). Abnormal amygdalar activation and connectivity in adolescents with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry 50, 828837.CrossRefGoogle ScholarPubMed
Rubia, K (2011). “Cool” inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus “hot” ventromedial orbitofrontal-limbic dysfunction in conduct disorder: a review. Biological Psychiatry 69, e69e87.Google Scholar
Rubia, K, Overmeyer, S, Taylor, E, Brammer, M, Williams, SC, Simmons, A, Bullmore, ET (1999). Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. American Journal of Psychiatry 156, 891896.Google Scholar
Rubia, K, Smith, AB, Brammer, MJ, Toone, B, Taylor, E (2005). Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. American Journal of Psychiatry 162, 10671075.Google Scholar
Russell, JA (1980). A circumplex model of affect. Journal of Personality and Social Psychology 39, 11611178.Google Scholar
Sattler, J (2001). Assessment of Children: Cognitive Applications. Jerome M. Sattler: La Mesa, CA.Google Scholar
Schlochtermeier, L, Stoy, M, Schlagenhauf, F, Wrase, J, Park, SQ, Friedel, E, Huss, M, Lehmkuhl, U, Heinz, A, Ströhle, A (2011). Childhood methylphenidate treatment of ADHD and response to affective stimuli. European Neuropsychopharmacology 21, 646654.Google Scholar
Schulz, KP, Bédard, ACV, Fan, J, Clerkin, SM, Dima, D, Newcorn, JH, Halperin, JM (2014). Emotional bias of cognitive control in adults with childhood attention-deficit/hyperactivity disorder. NeuroImage: Clinical 5, 19.Google Scholar
Schulz, KP, Clerkin, SM, Halperin, JM, Newcorn, JH, Tang, CY, Fan, J (2009). Dissociable neural effects of stimulus valence and preceding context during the inhibition of responses to emotional faces. Human Brain Mapping 30, 28212833.CrossRefGoogle ScholarPubMed
Schulz, KP, Fan, J, Tang, CY, Newcorn, JH, Buchsbaum, MS, Cheung, AM, Halperin, JM (2004). Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: an event-related fMRI study. American Journal of Psychiatry 161, 16501657.Google Scholar
Schulz, KP, Newcorn, JH, Fan, JIN, Tang, CY, Halperin, JM (2005). Brain activation gradients in ventrolateral prefrontal cortex related to persistence of ADHD in adolescent boys. Journal of the American Academy of Child and Adolescent Psychiatry 44, 4754.Google Scholar
Senderecka, M, Grabowska, A, Szewczyk, J, Gerc, K, Chmylak, R (2012). Response inhibition of children with ADHD in the stop-signal task: an event-related potential study. International Journal of Psychophysiology 85, 93105.Google Scholar
Shafritz, KM, Collins, SH, Blumberg, HP (2006). The interaction of emotional and cognitive neural systems in emotionally guided response inhibition. NeuroImage 31, 468475.Google Scholar
Shaw, P, Eckstrand, K, Sharp, W, Blumenthal, J, Lerch, JP, Greenstein, D, Rapoport, JL (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Sciences 104, 1964919654.Google Scholar
Shaw, P, Kabani, NJ, Lerch, JP, Eckstrand, K, Lenroot, R, Gogtay, N, Wise, SP (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience 28, 35863594.Google Scholar
Shaw, P, Stringaris, A, Nigg, J, Leibenluft, E (2014). Emotion dysregulation in attention deficit hyperactivity disorder. American Journal of Psychiatry 171, 276293.Google Scholar
Sjöwall, D, Roth, L, Lindqvist, S, Thorell, LB (2013). Multiple deficits in ADHD: executive dysfunction, delay aversion, reaction time variability, and emotional deficits. Journal of Child Psychology and Psychiatry 6, 619627.Google Scholar
Smith, A, Taylor, E, Brammer, M, Toone, B, Rubia, K (2006). Task-specific hypoactivation in prefrontal and temporoparietal brain regions during motor inhibition and task switching in medication-naive children and adolescents with attention deficit hyperactivity disorder. American Journal of Psychiatry 163, 10441051.Google Scholar
Smith, JL, Johnstone, SJ, Barry, RJ (2004). Inhibitory processing during the Go/NoGo task: an ERP analysis of children with attention-deficit/hyperactivity disorder. Clinical Neurophysiology 115, 13201331.Google Scholar
Smith, JL, Johnstone, SJ, Barry, RJ (2007). Response priming in the Go/NoGo task: the N2 reflects neither inhibition nor conflict. Clinical Neurophysiology 118, 343355.Google Scholar
Smith, JL, Johnstone, SJ, Barry, RJ (2008). Movement-related potentials in the Go/NoGo task: the P3 reflects both cognitive and motor inhibition. Clinical Neurophysiology 119, 704714.Google Scholar
Sobanski, E, Banaschewski, T, Asherson, P, Buitelaar, J, Chen, W, Franke, B, Holtmann, M, Krumm, B, Sergeant, J, Sonuga-Barke, E, Stringaris, A, Anney, R, Ebstein, RP, Gill, M, Miranda, A, Mulas, F, Oades, RD, Roeyers, H, Rothenberger, A, Steinhausen, H-S, Faraone, SV (2010). Emotional lability in children and adolescents with attention deficit/hyperactivity disorder (ADHD): clinical correlates and familial prevalence. Journal of Child Psychology and Psychiatry 51, 915923.Google Scholar
Ströhle, A, Stoy, M, Wrase, J, Schwarzer, S, Schlagenhauf, F, Huss, M, Hein, J, Nedderhut, A, Neumann, B, Gregor, A, Juckel, G, Knutson, B, Lehmkuhl, U, Bauer, M, Heinz, A (2008). Reward anticipation and outcomes in adult males with attention-deficit/hyperactivity disorder. NeuroImage 39, 966972.Google Scholar
Tamm, L, Menon, V, Ringel, J, Reiss, AL (2004). Event-related fMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry 43, 14301440.Google Scholar
Ulloa, RE, Ortiz, S, Higuera, F, Nogales, I, Fresan, A, Apiquian, R, Cortés, J, Arechavaleta, B, Foulliux, C, Martínez, P, Hernández, L, Domínguez, E, de la Peña, F (2006). Interrater reliability of the Spanish version of Schedule for Affective Disorders and Schizophrenia for School-age Children – present and lifetime version (K-SADS-PL) [in Spanish]. Actas Españolas de Psiquiatría 34, 3640.Google Scholar
Vaidya, CJ (2012). Neurodevelopmental abnormalities in ADHD. Current Topics in Behavioral Neurosciences 9, 4966.CrossRefGoogle ScholarPubMed
Vaidya, CJ, Austin, G, Kirkorian, G, Ridlehuber, HW, Desmond, JE, Glover, GH, Gabrieli, JD (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proceedings of the National Academy of Sciences 95, 1449414499.CrossRefGoogle ScholarPubMed
Wang, L, Zhu, C, He, Y, Zang, Y, Cao, Q, Zhang, H, Zhong, Q, Wang, Y (2009). Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Human Brain Mapping 30, 638649.Google Scholar
Supplementary material: File

López-Martín supplementary material

López-Martín supplementary material 1

Download López-Martín supplementary material(File)
File 520.2 KB