Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T20:02:12.264Z Has data issue: false hasContentIssue false

Lower Cretaceous alkali feldspar granites in the central part of the Great Xing’an Range, northeastern China: chronology, geochemistry and tectonic implications

Published online by Cambridge University Press:  13 August 2014

DEXIN TIAN
Affiliation:
College of Earth Sciences, Jilin University, Changchun 130061, China
WENCHUN GE*
Affiliation:
College of Earth Sciences, Jilin University, Changchun 130061, China
HAO YANG
Affiliation:
College of Earth Sciences, Jilin University, Changchun 130061, China
GUOCHUN ZHAO
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
YANLONG ZHANG
Affiliation:
College of Earth Sciences, Jilin University, Changchun 130061, China
*
Author for correspondence: gewenchun@jlu.edu.cn

Abstract

The Mingshui–Jilasitai–Suolun area, located in the central part of the Great Xing’an Range, is characterized by large volumes of alkali feldspar granites. However, the formation time and tectonic setting of these rocks remains controversial owing to a lack of precise geochronological and detailed geochemical data. In this paper, we report new SIMS U–Pb zircon ages and mineralogical, petrographical and geochemical data for Lower Cretaceous alkali feldspar granites from the Mingshui–Jilasitai–Suolun area. The SIMS zircon dating results indicate that these granites formed at 133.6–135.9 Ma. The mineralogical, petrographical and geochemical data show that these granitic rocks belong to highly fractionated I-type granites. Combined with the regional geology data, we propose that the formation of the Lower Cretaceous alkali feldspar granitic rocks was related to an extension induced by delamination of the lithosphere that arose from subduction of the Palaeo-Pacific plate.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boynton, W. V. 1984. Geochemistry of the rare earth elements: meteorite studies. In Rare Earth Elements Geochemistry (ed. Henderson, P.), pp. 63114. Amsterdam: Elsevier.Google Scholar
Chappell, B. W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46, 535–51.CrossRefGoogle Scholar
Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. Pacific Geology 8, 173–4.Google Scholar
Chappell, B. W. & White, A. J. R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 126.CrossRefGoogle Scholar
Clemens, J. D., Holloway, J. R. & White, A. J. R. 1986. Origin of an A-type granite: experimental constraints. American Mineralogist 71, 317–24.Google Scholar
Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. 1982. Nature and origin of A-type granites with particular reference to Southeastern Australia. Contributions to Mineralogy and Petrology 80, 189200.Google Scholar
Eby, G. N. 1990. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26, 115–34.CrossRefGoogle Scholar
Ge, W. C., Wu, F. Y., Zhou, C. Y. & Zhang, J. H. 2005. Zircon U-Pb ages and its significance of the Mesozoic granites in the Wlanhaote region, central Da Hinggan Mountain. Acta Petrologica Sinica 21, 749–62 (in Chinese with English abstract).Google Scholar
Hofmann, A. W. 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90, 297314.Google Scholar
IMBGMR (Inner Mongolian Bureau of Geology and Mineral Resources). 1990. Regional Geology of Inner Mongolia Autonomous Region. Beijing: Geological Publishing House, 725 pp. (in Chinese with English summary).Google Scholar
Jahn, B. M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In Aspects of the Tectonic Evolution of China (ed. Malpas, J., Fletcher, C. J. N., Ali, J. R. & Aitchison, J. C.), pp. 73100. Geological Society of London, Special Publication no. 226.Google Scholar
Jahn, B. M., Wu, F. Y., Capdeviala, R., Fourcade, S., Wang, Y. X. & Zhao, Z. H. 2001. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’an (Khingan) Mountains in NE China. Lithos 59, 171–98.Google Scholar
Jahn, B. M., Wu, F. Y. & Chen, B. 2000. Massive granitoids generation in central Asia: Nd isotopic evidence and implication for continental growth in the Phanerozoic. Episodes 23, 8292.Google Scholar
Koschek, G. 1993. Origin and significance of the SEM cathodoluminescence from zircon. Journal of Microscopy 171, 223–32.Google Scholar
Li, X. H., Liu, Y., Li, Q. L., Guo, C. H. & Chamberlain, K. R. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry, Geophysics, Geosystems 10, Q04010. doi: 10.1029/2009GC002400.Google Scholar
Li, X. H., Qi, C. S., Liu, Y., Liang, X. R., Tu, X. L., Xie, L. W. & Yang, Y. H. 2005. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of Yangtze Block: new constraints from Hf isotopes and Fe/Mn ratios. Chinese Science Bulletin 50, 2481–6.Google Scholar
Li, X. H., Sun, M., Wei, G. J., Liu, Y., Lee, C. Y. & Malpas, J. G. 2000. Geochemical and Sm-Nd isotopic study of amphibolites in the Cathaysia Block, SE China: evidence for extremely depleted mantle in the Paleoproterozoic. Precambrian Research 102, 251–62.CrossRefGoogle Scholar
Li, P. Z. & Yu, J. S. 1993. Nianzishan miarolitic alkaline granite stock, Heilongjiang – its ages and geological implications. Geochimica 22, 389–97 (in Chinese with English abstract).Google Scholar
Li, P. Z., Yu, J. S. & Chen, H. S. 1994. Isotopic geochemistry of Nianzishan miarolitic alkaline granite. Isotopic Geochemical Research. Hangzhou: Zhejiang University Press, pp. 269–86 (in Chinese with English abstract).Google Scholar
Liu, Y., Liu, X. M., Hu, Z. C., Diwu, C. R., Yuan, H. L. & Gao, S. 2007. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS. Acta Petrologica Sinica 23, 12031210 (in Chinese with English abstract).Google Scholar
Liu, Y., Liu, H. C. & Li, X. H. 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica 25, 552–9 (in Chinese with English abstract).Google Scholar
Loiselle, M. C. & Wones, D. R. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs 11, 468.Google Scholar
Ludwig, K. R. 2001. User's Manual for Isoplot/Ex rev. 2.49: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre Special Publication 1a, 56 pp.Google Scholar
Maniar, P. D. & Piccoli, P. M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635–43.Google Scholar
Maruyama, S. 1997. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. Island Arc 6, 91120.Google Scholar
Peccerillo, A. & Taylor, S. R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology 58, 6381.CrossRefGoogle Scholar
Pitcher, W. S. 1997. The Nature and Origin of Granite. Springer, 404 pp.Google Scholar
Pupin, J. P. 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology 73, 207–20.Google Scholar
Roberts, M. P. & Clemens, J. D. 1993. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21, 825–8.Google Scholar
Rudnick, R. L., Gao, S., Ling, W. L., Liu, Y. S. & McDonough, W. F. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos 77, 609–37.CrossRefGoogle Scholar
Sagong, H. & Kwon, S. T. 2005. Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics 24, TC5002. doi: 10.1029/2004TC001720.Google Scholar
Sláma, J., Košler, K., Condon, J. L., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. 2008. Plešovice zircon–a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.Google Scholar
Sui, Z. M., Ge, W. C., Wu, F. Y., Zhang, J. H., Xu, X. C. & Chang, R. Y. 2007. Zircon U-Pb ages, geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da Hinggan Mts. Acta Petrologica Sinica 23, 461–80 (in Chinese with English abstract).Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Sun, D. Y., Wu, F. Y., Li, H. M. & Lin, Q. 2000. Emplacement age of the postorogenic A-type granites in northwestern Lesser Xing’an Ranges, and its relationship to the eastward extension of Suolunshan-Hegenshan-Zhalaite collisional suture zone. Chinese Science Bulletin 45, 2217–22 (in Chinese with English abstract).Google Scholar
Sylvester, P. J. 1989. Post-collisional alkaline granites. Journal of Geology 97, 261–80.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. London: Blackwell, pp. 5772.Google Scholar
Wang, J. G., He, Z. H. & Xu, W. L. 2013. Petrogenesis of riebekite rhyolites in the southern Da Hinggan Mts. Geochronological and geochemical evidence. Acta Petrologica Sinica 29, 853–63 (in Chinese with English abstract).Google Scholar
Wang, X. A., Xu, Z. Y., Liu, Z. H. & Zhou, K. 2012. Petrogenesis and tectonic setting of the K-feldspar granites in Chaihe area, central Greater Xing’an Range: constraints from petro-geochemistry and zircon U-Pb isotope chronology. Acta Petrologica Sinica 28, 2647–55 (in Chinese with English abstract).Google Scholar
Wang, Y. X. & Zhao, Z. H. 1997. Geochemistry and origin of the Baerzhe REE-Nb-Be-Zr superlarge deposit. Geochimica 26, 2435 (in Chinese with English abstract).Google Scholar
Wei, C. S., Zheng, Y. F., Zhao, Z. F. & Valley, J. W. 2002. Oxygen and neodymium isotope evidence for recycling of juvenile crust in northeast China. Geology 30, 375–8.Google Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.CrossRefGoogle Scholar
Wilde, S. A., Wu, F. Y. & Zhao, G. C. 2010. The Khanka Block, NE China, and its significance for the evolution of the Central Asian Orogenic Belt and continental accretion. In The Evolving Continents: Understanding Processes of Continental Growth (eds Kusky, T. M., Zhai, M.-G. & Xiao, W.), pp. 117–37. Geological Society of London, Special Publication no. 338.Google Scholar
Wu, F. Y., Jahn, B. M., Wilde, S., Lo, C. H., Yui, T. F., Lin, Q., Ge, W. C. & Sun, D. Y. 2003. Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos 66, 241–73.Google Scholar
Wu, F. Y., Li, X. H., Yang, J. H. & Zheng, Y. F. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica 23, 1217–38 (in Chinese with English abstract).Google Scholar
Wu, F. Y., Lin, J. Q., Wilde, S. A., Zhang, X. O. & Yang, J. H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters 233, 103–19.Google Scholar
Wu, F. Y. & Sun, D. Y. 1999. The Mesozoic magmatism and lithospheric thinning in Eastern China.Journal of Changchun Science and Technology University 29, 313–8 (in Chinese with English abstract).Google Scholar
Wu, F. Y., Sun, D. Y., Ge, W. C., Zhang, Y. B., Grant, M. L., Wilde, S. A. & Jahn, B. M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences 41, 130.Google Scholar
Wu, F. Y., Sun, D. Y., Li, H., Jahn, B. M. & Wilde, S. 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology 187, 143–73.Google Scholar
Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H. & Xu, P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology 234, 105–26.Google Scholar
Xiao, B., Li, Q. G., Liu, S. W., Wang, Z. Q., Yang, P. T., Chen, J. L. & Xu, X. Y. 2014. Highly fractionated Late Triassic I-type granites and related molybdenum mineralization in the Qinling orogenic belt: geochemical and U–Pb–Hf and Re–Os isotope constraints. Ore Geology Reviews 56, 220–33.Google Scholar
Yang, W. B., Niu, H. C., Shan, Q., Sun, W. D., Zhang, H., Li, N. B., Jiang, Y. H. & Yu, X. Y. 2013. Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr–REE–Nb mineralization. Mineralium Deposita 49, 451–70.Google Scholar
Yang, J. H., Wu, F. Y., Chung, S. L., Wilde, S. A. & Chu, M. F. 2006 a. A hybrid origin for the Qianshan A-type granite, northeast China: geochemical and Sr–Nd–Hf isotopic evidence. Lithos 89, 89106.Google Scholar
Yang, J. H., Wu, F. Y., Shao, J. A., Wilde, S. A., Xie, L. W. & Liu, X. M. 2006 b. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters 246, 336–52.Google Scholar
Ye, H. W., Zhang, X. Z. & Zhou, Y. W. 1994. The texture and evolution of Manzhouli-Suifenhe lithosphere – study based on features of blueschist and ophiolites. In Geological Studies on the Texture and Evolution of the Manzhoulio-Suifenhe Geological Transect in China (eds M-SGT Geological Project Group), pp. 7384. Beijing: Seismic Publishing House (in Chinese with English abstract).Google Scholar
Zhang, J. H., Gao, S., Ge, W. C., Wu, F. Y., Yang, J. H., Wilde, S. A. & Li, M. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeastern China: implications for subduction-induced delamination. Chemical Geology 276, 144–65.CrossRefGoogle Scholar
Zhang, J. H., Ge, W. C., Wu, F. Y., Wilde, S. A., Yang, J. H. & Liu, X. M. 2008. Large-scale Early Cretaceous volcanic events in the northern Great Xing’an Range, northeastern China. Lithos 102, 138–57.Google Scholar
Zhang, H. F., Parrish, R., Zhang, L., Xu, W. C., Yuan, H. L., Gao, S. & Crowley, Q. G. 2007. A-type granite and adakitic magmatism association in Songpan–Garze fold belt, eastern Tibetan Plateau: implication for lithospheric delamination. Lithos 97, 323–35.Google Scholar
Zhang, Q., Wang, Y., Pan, G. Q., Li, C. D. & Jin, W. J. 2008. Sources of granites: some crucial questions on granite study (4). Acta Petrologica Sinica 24, 1193–204 (in Chinese with English abstract).Google Scholar
Zhou, Y., Ge, W. C. & Wang, Q. H. 2011. Petrogenesis of Mesozoic granite in Wulanhaote region, central Da Hinggan Mountains: constraints from geochemistry and Sr-Nd-Hf isotope. Acta Petrologica et Mineralogica 30, 901–23 (in Chinese with English abstract).Google Scholar
Zhou, J. B., Wilde, S. A., Zhang, X. Z., Zhao, G. C., Liu, F. L., Qiao, D. W., Ren, S. M. & Liu, J. H. 2011 a. A > 1300 km late Pan-African metamorphic belt in NE China: new evidence from the Xing’an block and its tectonic implications. Tectonophysics 509, 280–92.Google Scholar
Zhou, J. B., Wilde, S. A., Zhao, G. C., Zhang, X. Z., Zheng, C. Q., Wang, H. & Zeng, W. S. 2010 a. Was the easternmost segment of the Central Asian Orogenic Belt derived from Gondwana: an intriguing dilemma? Journal of Geodynamics 50, 300–17.CrossRefGoogle Scholar
Zhou, J. B., Wilde, S. A., Zhao, G. C., Zhang, X. Z., Zheng, C. Q. & Wang, H. 2010 b. Pan-African metamorphic and magmatic rocks of the Khanka Massif, NE China: further evidence regarding their affinity. Geological Magazine 147, 737–49.Google Scholar
Zhou, J. B., Wilde, S. A., Zhao, G. C., Zhang, X. Z., Zheng, C. Q. & Wang, H. 2011 b. New SHRIMP U-Pb zircon ages from the Heilongjiang high-pressure belt: constraints on the Mesozoic evolution of NE China. American Journal of Science 310, 1024–53.Google Scholar