Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T20:37:03.365Z Has data issue: false hasContentIssue false

The Mesozoic–Cenozoic tectonic evolution of the New Siberian Islands, NE Russia

Published online by Cambridge University Press:  25 September 2014

CHRISTIAN BRANDES*
Affiliation:
Institut für Geologie, Leibniz Universität Hannover, Callinstraße, 30167 Hannover, Germany
KARSTEN PIEPJOHN
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, 30655 Hannover, Germany
DIETER FRANKE
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, 30655 Hannover, Germany
NIKOLAY SOBOLEV
Affiliation:
A.P. Karpinsky Russian Geological Research Institute (VSEGEI), Sredny av. 74, 199106 Saint-Petersburg, Russia
CHRISTOPH GAEDICKE
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, 30655 Hannover, Germany
*
Author for correspondence: brandes@geowi.uni-hannover.de

Abstract

On the New Siberian Islands the rocks of the east Russian Arctic shelf are exposed and allow an assessment of the structural evolution of the region. Tectonic fabrics provide evidence of three palaeo-shortening directions (NE–SW, WNW–ESE and NNW–SSE to NNE–SSW) and one set of palaeo-extension directions revealed a NE–SW to NNE–SSW direction. The contractional deformation is most likely the expression of the Cretaceous formation of the South Anyui fold–thrust belt. The NE–SW shortening is the most prominent tectonic phase in the study area. The WNW–ESE and NNW–SSE to NNE–SSW-oriented palaeo-shortening directions are also most likely related to fold belt formation; the latter might also have resulted from a bend in the suture zone. The younger Cenozoic NE–SW to NNE–SSW extensional direction is interpreted as a consequence of rifting in the Laptev Sea.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amrouch, K., Lacombe, O., Bellahsen, N., Daniel, J.-M. & Callot, J.-P. 2010. Stress and strain patterns, kinematics and deformation mechanisms in a basement-cored anticline: Sheep Mountain Anticline, Wyoming. Tectonics 29, TC1005, doi: 10.1029/2009TC002525.Google Scholar
Angelier, J. & Mechler, P. 1977. Sur une méthode graphique de recherche des constraintes principales également utilisable en tectonique et en séismologie: la méthode des dièdres droits. Bulletin de la Societé Géologique de France 7, 1309–18.Google Scholar
Beaudoin, N., Bellahsen, N., Lacombe, O. & Emmanuel, L. 2011. Fracture-controlled paleohydrogeology in a basement-cored, fault-related fold: sheep Mountain Anticline, Wyoming. United States. Geochemistry, Geophysics, Geosystems 12, doi: 10.1029/2010GC003494.Google Scholar
Beaudoin, N., Lacombe, O., Bellahsen, N. & Emmanuel, L. 2013. Contribution of studies of sub-seismic fracture populations to paleo-hydrological reconstructions (Bighorn Basin, USA). Procedia Earth and Planetary Science, Water Rock Interaction 14, 7, 5760, doi: 10.1016/j.proeps.2013.03.198.Google Scholar
Beaudoin, N., Lepretre, R., Bellahsen, N., Lacombe, O., Amrouch, K., Callot, J.-P., Emmanuel, L. & Daniel, J.-M. 2012. Structural and mircostructural evolution of the Rattlesnake Mountain Anticline (Wyoming, USA): New insights into the Sevier and Laramide orogenic stress build-up in the Bighorn Basin. Tectonophysics 576–577, 2045.Google Scholar
Bellahsen, N., Fiore, P. & Pollard, D. D. 2006. The role of fractures in the structural interpretation of Sheep Mountain Anticline, Wyoming. Journal of Structural Geology 28, 850–67.Google Scholar
Bergbauer, S. & Pollard, D. D. 2004. A new conceptual fold-fracture model including prefolding joints, based on the Emigrant Gap anticline, Wyoming. GSA Bulletin 116, 294307.CrossRefGoogle Scholar
Berghemer, H. 1990. Grundlagen der Geophysik. Darmstadt: Wissenschaftliche Buchgesellschaft, 201 pp.Google Scholar
Bogdanovskii, O. G., Mineev, S. D., Assonov, S. S., Silantyev, S. A., Karpenko, S. F., Shukolyukov, Yu. A. & Savostin, L. A. 1992. Magmatism on the De Long Islands, eastern Arctic: isotopic geochemistry and geochronology. Geokhimiya 1, 4757.Google Scholar
Bondarenko, G. E., Soloviev, A. V., Tuchkova, M. I., Garver, J. I. & Podgornyi, I. I. 2003. Age of detrital zircons from sandstones of the Mesozoic flysch formation in the South Anyui Suture Zone (western Chukotka). Lithology and Mineral Resources 38, 162–76.Google Scholar
Cramer, B. & Franke, D. 2005. Indications for an active petroleum system in the Laptev Sea, NE Siberia. Journal of Petroleum Geology 28, 369–84.Google Scholar
Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V. & San’kov, V. 1997. Paleostress reconstructions and geodynamics of the Baikal region Central Asia, Part 2. Cenozoic rifting. Tectonophysics 282, 138.Google Scholar
Drachev, S. S. 2011. Tectonic setting, structure and petroleum geology of the Siberian Arctic offshore sedimentary basins. In Arctic Petroleum Geology (eds Spencer, A. M., Embry, A. F., Gautier, D. L., Stoupakova, A. V. & Sorensen, K.), pp. 369–94. Geological Society of London, Memoir no. 35.Google Scholar
Drachev, S. S., Savostin, L. A., Groshev, V. G. & Bruni, I. N. 1998. Structure and geology of the continental shelf of the Laptev Sea, Eastern Russian Arctic. Tectonophysics 298, 357–93.Google Scholar
Dusseault, M. B., Maury, V., Sanfilippo, F. & Santarelli, F. J. 2004. Drilling around salt: stresses, risks uncertainties. In Gulf Rocks 2004, 6th North America Rock Mechanics Symposium (NARMS), Houston, Texas, June 5–9, 2004. American Rock Mechanics Association Paper 04–647, 12 pp.Google Scholar
Engelder, T. & Geiser, P. 1980. On the use of regional joint sets as trajectories of paleostress fields during the development of the Appalachian Plateau, New York. Journal of Geophysical Research 85 B11, 6319–41.CrossRefGoogle Scholar
Fischer, M. P. & Wilkerson, M. S. 2000. Predicting the orientation of joints from fold shape: results of pseudo-three-dimensional modeling and curvature analysis. Geology 28, 15–8.Google Scholar
Franke, D. & Hinz, K. 2005. The structural style of sedimentary basins on the shelves of the Laptev Sea and western East Siberian Sea, Siberian Arctic. Journal of Petroleum Geology 28, 269–86.CrossRefGoogle Scholar
Franke, D. & Hinz, K. 2009. Geology of the shelves surrounding the New Siberian Islands, Russian Arctic. Stephan Mueller Special Publication Series 4, 3544.Google Scholar
Franke, D., Hinz, K., Block, M., Drachev, S. S., Neben, S., Kos’ko, M. K., Reichert, C. & Roeser, H. A. 1998 (published 2000). Tectonics of the Laptev Sea region in north-eastern Siberia. In ICAM III: International Conference on Arctic Margins. Alfred-Wegener-Institute for Polar and Marine Research and the German Society of Polar Research, Celle (eds N. W. Roland and F. Tessensohn), pp. 51–58.Google Scholar
Franke, D., Hinz, K. & Oncken, O. 2001. The Laptev Sea Rift. Marine and Petroleum Geology 18, 1083–127.Google Scholar
Franke, D., Hinz, K. & Reichert, C. 2004. Geology of the East Siberian Sea, Russian Arctic, from seismic images: structures, evolution, and implications for the evolution of the Arctic Ocean Basin. Journal of Geophysical Research 109, B07106, doi: 10.1029/2003JB002687.Google Scholar
Franke, D., Krüger, F. & Klinge, K. 2000. Tectonics of the Laptev Sea Moma ‘Rift’ region: investigation with seismological broadband data. Journal of Seismology 4, 99116.Google Scholar
Franke, D., Reichert, C., Damm, V. & Piepjohn, K. 2008. The South Anyui suture, Northeast Arctic Russia, revealed by offshore seismic data. Norwegian Journal of Geology 88, 189200.Google Scholar
Fujita, K., Cambray, F. W. & Velbel, M. A. 1990. Tectonics of the Laptev Sea and Moma Rift systems, northeastern USSR. Marine Geology 93, 95118.Google Scholar
Fujita, K., Stone, D. V., Layer, P. W., Parfenov, L. M. & Kos’min, B. M. 1997. Cooperative program helps decipher tectonics of northeastern Russia. Eos 24, 252–3.Google Scholar
Gaina, C., Roest, W. R. & Müller, R. D. 2002. Late Cretaceous–Cenozoic deformation of northeast Asia. Earth and Planetary Science Letters 197, 273–86.Google Scholar
Gohram, F. D., Woodward, L. A., Callender, J. F. & Greer, A. R. 1979. Fractures in Cretaceous rocks from selected areas of the San Juan basin, New Mexico: exploration implications. AAPG Bulletin 64, 598607.Google Scholar
Hancock, P. L. 1985. Brittle microtectonics: principles and practice. Journal of Structural Geology 7, 437–57.Google Scholar
Hancock, P. L. & Kadhi, T. 1978. Analysis of mesoscopic fractures in the Dhruma-Nisah segment of the central Arabian graben system. Journal of the Geological Society of London 135, 339–47.Google Scholar
Harris, J. F., Taylor, G. L. & Walper, J. L. 1960. Relation of deformational fractures in sedimentary rocks to regional and local structures. AAPG Bulletin 44, 1853–73.Google Scholar
Hennings, P. H., Olson, J. E. & Thompson, L. B. 2000. Combining outcrop data and three-dimensional structural models to characterizes fractured reservoirs: an example from Wyoming. AAPG Bulletin 84, 830–49.Google Scholar
Herman, A. B. & Spicer, R. A. 2010. Mid-Cretaceous floras and climate of the Russian high Arctic (Novosibirsk Islands, Northern Yakutiya). Paleogeography, Paleoclimatology, Paleoecology 295, 409–22.Google Scholar
Homberg, C., Hu, J.-C., Angelier, J., Bergerat, F. & Lacombe, O. 1997. Characterization of stress perturbations near major fault zones: insights from field studies (Jura Mountains) and numerical modelling. Journal of Structural Geology 19, 703–18.Google Scholar
Jones, P. B. 1980. Evidence from Canada and Alaska on plate tectonic evolution of the Arctic Ocean Basin. Nature 285, 215–7.Google Scholar
Khain, V. E., Polyakova, I. D. & Filtova, N. I. 2009. Tectonics and petroleum potential of the East Arctic province. Russian Geology and Geophysics 50, 334–45.Google Scholar
Konstantinovsky, A. A. 2007. Structure and geodynamics of the Verkhoyansk fold-and-thrust belt. Geotectonics 41, 337–54.Google Scholar
Kos’ko, M. & Korago, E. 2009. Review of the geology of the New Siberian Islands between the Laptev and the East Siberian Seas, North East Russia. Stephan Mueller Special Publication Series 4, 4564.Google Scholar
Kos’ko, M. K., Lopatin, B. G. & Ganelin, V. G. 1990. Major geological features of the islands of the East Siberian and Chukchi Seas and the northern coast of Chukotka. Marine Geology 93, 349–67.Google Scholar
Kos’ko, M. K. & Trufanov, G. V. 2002. Middle Cretaceous to Eopleistocene Sequences on the New Siberian Islands: an approach to interpret offshore seismic. Marine and Petroleum Geology 19, 901–19.Google Scholar
Kuzmichev, A. B. 2009. Where does the South Anyui suture go in the New Siberian Islands and Laptev Sea?: implications for Amerasia basin origin. Tectonophysics 463, 86108.Google Scholar
Kuzmichev, A. B., Aleksandrova, G. N. & Herman, A. B. 2009. Aptian–Albian Coaliferous Sediments of Kotel’nyi Island (New Siberian Islands): New Data on the Section Structure and Ignimbrite Volcanism. Stratigraphy and Geological Correlation 17, 519–43.Google Scholar
Kuzmichev, A. B. & Pease, V. L. 2007. Siberian trap magmatism on the New Siberian Islands: constraints for Arctic Mesozoic plate tectonic reconstructions. Journal of the Geological Society 164, 959–68.Google Scholar
Kyz’michev, A. B., Soloviev, A. V., Gonikberg, V. E., Shapiro, M. N. & Zamzhitskii, O. V. 2006. Mesozoic syncollisional siliciclastic sediments of the Bol'shoi Lyakhov island (New Siberian Islands). Stratigraphy and Geological Correlation 14, 3048.Google Scholar
Lacombe, O. 2012. Do fault slip data inversions actually yield ‘paleostresses’ that can be compared with contemporary stresses? A critical discussion. Geoscience, 344, 159–73, doi: 10.1016/j.crte.2012.01.006.Google Scholar
Lacombe, O., Bellahsen, N. & Mouthereau, F. 2011. Fracture patterns in the Zagros Simply Folded Belt (Fras, Iran): constraints on early collisional tectonic history and role of basement faults. Geological Magazine 148, 940–63.Google Scholar
Lawver, L. A. & Scotese, C. R. 1990. A review of tectonic models for the evolution of the Canada Basin. In The Arctic Ocean Region (eds Grantz, A., Johnson, L. and Sweeney, J. F.), pp. 593617. Geological Society of America, Boulder, Colorado, Geology of North America no. 50.Google Scholar
Lisle, R. J. 1994. Detection of zones of abnormal strains in structures using Gaussian curvature analysis. AAPG Bulletin 78, 1811–9.Google Scholar
Marrett, R. & Allmendinger, R. W. 1990. Kinematic analysis of fault-slip data. Journal of Structural Geology 12, 973–86.Google Scholar
Miller, E. L., Toro, J., Gehrels, G., Amato, J. M., Prokopiev, A., Tuchkova, M. I., Akinin, V. V., Dumitru, T. A., Moore, T. E. & Cecile, M. P. 2006. New insights into Arctic paleogeography and tectonics from U–Pb detrital zircon geochronology. Tectonics 25, TC3013, doi: 1029/2005TC001830.Google Scholar
Miller, E. L. & Verzhbitsky, V. E. 2009. Structural studies near Pevek, Russia: implications for formation of the East Siberian Shelf and Makarov Basin of the Arctic Ocean. Stephan Mueller Special Publications Series 4, 223–41.Google Scholar
Mynatt, I., Solomon, S. & Pollard, D. D. 2009. Fracture initiation, development, and reactivation in folded sedimentary rocks at Raplee Ridge, UT. Journal of Structural Geology 31, 1100–13.Google Scholar
Narr, W. 1991. Fracture density in the deep subsurface: techniques with application to Point Arguello oil field. AAPG Bulletin 75, 1300–23.Google Scholar
Natal’in, B. A., Amato, J. M., Toro, J. & Wright, J. E. 1999. Paleozoic rocks of northern Chukotka Peninsula, Russian far east: implications for the tectonics of the Arctic region. Tectonics 18, 9771003.CrossRefGoogle Scholar
Rowley, D. B. & Lottes, A. L. 1988. Plate-kinematic reconstructions of the North Atlantic and Arctic: late Jurassic to Present. Tectonophysics 155, 73120.Google Scholar
Saintot, A. & Angelier, J. 2002. Tectonic paleostress fields and structural evolution of the NW-Caucasus fold-and-thrust belt from Late Cretaceous to Quaternary. Tectonophysics 357, 131.Google Scholar
Sato, K. 2012. Fast multiple inversion for stress analysis from fault-slip data. Computers & Geosciences 40, 132–7.Google Scholar
Shepard, E. G., Müller, R. D. & Seton, M. 2013. The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. Earth-Science Reviews 124, 148–83.Google Scholar
Silantyev, S. A., Bogdanovskii, O. G., Fedorov, P. I., Karpenko, S. F. & Kostitsyn, Yu. A. 2004. Intraplate magmatism of the De Long Islands: A response to the propagation of the ultraslow-spreading Gakkel Ridge into the passive continental margin in the Laptev Sea. Russian Journal of Earth Sciences 6, 3947.Google Scholar
Sokolov, S. D., Bondarenko, G. Ye., Layer, P. W. & Kravchenko-Berezhnoy, I. R. 2009. South Anyui suture: tectono-stratigraphy, deformations, and principal tectonic events. Stephan Mueller Special Publications Series 4, 201–21.Google Scholar
Stearns, D. W. & Friedman, M. 1972. Reservoirs in fractured rock. In Stratigraphic Oil and Gas Fields: Classification, Exploration Methods, and Case Histories (ed. King, R.E.), pp. 82106. AAPG, Memoir no. 16.Google Scholar
Tikoff, B. & Teyssier, C. 1994. Strain modelling of displacement-field partitioning in transpressional orogens. Journal of Structural Geology 16, 1575–88.Google Scholar
Vernikovsky, V. A., Dobretsov, Metelkin, N. L., Matushkin, D. V., Koulakov, N. Yu., Yu, I.. 2013 a. Concerning tectonics and the tectonic evolution of the Arctic. Russian Geology and Geophysics 54, 838–58.Google Scholar
Vernikovsky, V. A., Metelkin, Tolmacheva, D. V., Malyshev, T. Yu., Petrov, N. A., Sobolev, O. V., Matushkin, N. N., Yu, N.. 2013 b. Concerning the issue of paleotectonic reconstructions in the Arctic and of the tectonic unity of the New Siberian Islands terrane: new paleomagnetic and paleontological data. Doklady Earth Sciences 451, Part 2, 791–7.Google Scholar
Verzhbitsky, V. E. & Khudoley, A. K. 2010. The structural evolution and tectonic development of the Laptev Sea region in Mesozoic and Cenozoic. 72nd EAGE Conference & Exhibition incorporating SPE EUROPEC 2010. Barcelona: EAGE.Google Scholar
Yamaji, A. 2000. The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data. Journal of Structural Geology 22, 441–52.Google Scholar
Zahm, C. Z. & Hennings, P. H. 2009. Complex fracture development related to stratigraphic architecture: Challenges for structural deformation prediction, Tensleep Sandstone at the Alcova anticline, Wyoming. AAPG Bulletin 93, 1427–46.Google Scholar
Zalohar, J. & Vrabec, M. 2007. Paleostress analysis of heterogeneous fault-slip data: the Gauss method. Journal of Structural Geology 29, 1798–810.Google Scholar