Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-03T16:19:06.677Z Has data issue: false hasContentIssue false

Generalized Ertel’s theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and Navier–Stokes equations

Published online by Cambridge University Press:  07 November 2014

Alexei F. Cheviakov*
Affiliation:
Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK, S7N 5E6, Canada
Martin Oberlack
Affiliation:
Chair of Fluid Dynamics, Technische Universität Darmstadt, Otto-Berndt-Strasse 2, 64287 Darmstadt, Germany
*
Email address for correspondence: cheviakov@math.usask.ca

Abstract

Local conservation laws are systematically constructed for three-dimensional time-dependent viscous and inviscid incompressible fluid flows, in primitive variables and vorticity formulation, using the direct construction method. Complete sets of local conservation laws in primitive variables are derived for the case of conservation law multipliers depending on derivatives up to the second order. In the vorticity formulation, there exists an infinite family of vorticity-dependent conservation laws involving an arbitrary differentiable function of space and time, holding for both viscous and inviscid cases. The infinite conservation law family is used to generate further independent hierarchies of conservation laws that essentially involve vorticity and arbitrary flow parameters, which are determined by known evolution equations such as those for momentum, energy or helicity, though not necessarily in the form of a conservation law. The new conservation laws are not restricted to any reduced flow geometry such as planar or axisymmetric limits. Examples are considered.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anco, S. & Bluman, G. 1997 Direct construction of conservation laws from field equations. Phys. Rev. Lett. 78 (15), 28692873.CrossRefGoogle Scholar
Anco, S., Bluman, G. & Wolf, T. 2008 Invertible mappings of nonlinear PDEs to linear PDEs through admitted conservation laws. Acta Appl. Math. 101 (1), 2138.CrossRefGoogle Scholar
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Benjamin, T. B. 1972 The stability of solitary waves. Proc. R. Soc. Lond. A 328 (1573), 153183.Google Scholar
Bluman, G. W., Cheviakov, A. F. & Anco, S. C. 2010 Applications of Symmetry Methods to Partial Differential Equations. (Applied Mathematical Sciences, vol. 168) , Springer.Google Scholar
Bowman, J. C. 2009 Casimir cascades in two-dimensional turbulence. In Advances in Turbulence XII, Springer Proceedings in Physics, vol. 132, pp. 685688. Springer.Google Scholar
Chagelishvili, G. D., Khujadze, G. R., Lominadze, J. G. & Rogava, A. D. 1997 Acoustic waves in unbounded shear flows. Phys. Fluids 9, 19551962.Google Scholar
Cheviakov, A. F. 2007 GeM software package for computation of symmetries and conservation laws of differential equations. Comput. Phys. Commun. 176 (1), 4861.CrossRefGoogle Scholar
Gibbon, J. D. & Holm, D. D. 2010 The dynamics of the gradient of potential vorticity. J. Phys. A: Math. Theor. 43 (17), 172001.CrossRefGoogle Scholar
Gibbon, J. D. & Holm, D. D. 2012a Quasiconservation laws for compressible three-dimensional Navier–Stokes flow. Phys. Rev. E 86 (4), 047301.CrossRefGoogle ScholarPubMed
Gibbon, J. D. & Holm, D. D. 2012b Stretching and folding diagnostics in solutions of the three-dimensional Euler and Navier–Stokes equations. In Mathematical Aspects of Fluid Mechanics (ed. Robinson, J. C., Rodrigo, J. L. & Sadowski, W.), London Mathematical Society Lecture Note Series, vol. 402, vol. 402, pp. 201220. Cambridge University Press.CrossRefGoogle Scholar
Haynes, P. H. & McIntyre, M. E. 1990 On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci. 47 (16), 20212031.Google Scholar
Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A. 1985 Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123 (1), 1116.Google Scholar
Kelbin, O., Cheviakov, A. F. & Oberlack, M. 2013 New conservation laws of helically symmetric, plane and rotationally symmetric viscous and inviscid flows. J. Fluid Mech. 721, 340366.CrossRefGoogle Scholar
Khor’kova, N. G. & Verbovetsky, A. M. 1996 On symmetry subalgebras and conservation laws for the $k$ ${\it\epsilon}$ turbulence model and the Navier–Stokes equations. In Selected Papers on Number Theory and Algebraic Geometry, pp. 6190. American Mathematical Society.Google Scholar
Kuznetsov, E. A. 2008 Mixed Lagrangian–Eulerian description of vortical flows for ideal and viscous fluids. J. Fluid Mech. 600, 167180.CrossRefGoogle Scholar
Lax, P. D. 1968 Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Maths 21 (5), 467490.Google Scholar
Moffatt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35 (1), 117129.Google Scholar
Moiseev, S. S., Sagdeev, R. Z., Tur, A. V. & Yanovskii, V. V. 1982 On the freezing-in integrals and Lagrange invariants in hydrodynamic models. Sov. Phys. JETP 56 (1), 117123.Google Scholar
Müller, P. 1995 Ertel’s potential vorticity theorem in physical oceanography. Rev. Geophys. 33 (1), 6797.Google Scholar
Newcomb, W. A. 1967 Exchange invariance in fluid systems. In Magneto-Fluid and Plasma Dynamics, Proceedings of Symposia in Applied Mathematics, vol. XVIII, pp. 152161. American Mathematical Society.CrossRefGoogle Scholar
Olver, P. J. 2000 Applications of Lie Groups to Differential Equations. (Graduate Texts in Mathematics, vol. 107) , Springer.Google Scholar
Padhye, N. & Morrison, P. J. 1996a Relabeling symmetries in hydrodynamics and magnetohydrodynamics. Plasma Phys. Rep. 22 (10), 869877.Google Scholar
Padhye, N. & Morrison, P. J. 1996b Fluid element relabeling symmetry. Phys. Lett. A 219 (5), 287292.Google Scholar
Salmon, R. 1982 Hamilton’s principle and Ertel’s theorem. AIP Conf. Proc. 88, 127136.Google Scholar
Salmon, R. 1988 Hamiltonian fluid mechanics. Annu. Rev. Fluid Mech. 20 (1), 225256.CrossRefGoogle Scholar
Truesdell, C. 1954 The Kinematics of Vorticity. Indiana University Press.Google Scholar