Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T14:29:36.790Z Has data issue: false hasContentIssue false

Evolution of tree killing in bark beetles (Coleoptera: Curculionidae): trade-offs between the maddening crowds and a sticky situation

Published online by Cambridge University Press:  11 June 2013

B.S. Lindgren*
Affiliation:
Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George V2N 5A4, British Columbia, Canada
K.F. Raffa
Affiliation:
Department of Entomology, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States of America
*
1Corresponding author (e-mail: Staffan.Lindgren@unbc.ca).

Abstract

Bark beetles (Coleoptera: Curculionidae: Scolytinae) play important roles in temperate conifer ecosystems, and also cause substantial economic losses. Although their general life histories are relatively similar, different species vary markedly in the physiological condition of the hosts they select. Most of ∼6000 known species colonise dead or stressed trees, a resource they share with a large diversity of insects and other organisms. A small number of bark beetle species kill healthy, live trees. These few are of particular interest as they compete directly with humans for resources. We propose that tree killing evolved when intense interspecific competition in the ephemeral, scarce resource of defence-impaired trees selected for genotypes that allowed them to escape this limitation by attacking relatively healthy trees. These transitions were uncommon, and we suggest they were facilitated by (a) genetically and phenotypically flexible host selection behaviours, (b) biochemical adaptations for detoxifying a wide range of defence compounds, and (c) associations with symbionts, which together aided bark beetles in overcoming formidable constitutive and induced host defences. The ability to detoxify terpenes influenced the evolutionary course of pheromonal communication. Specifically, a mate attraction system, which was exploited by intraspecific competitors in locating poorly defended hosts, became a system of cooperative attack in which emitters benefit from the contributions responders make in overcoming defence. This functional shift in communication was driven in part by linkage of beetle semiochemistry to host defence chemistry. Behavioural and phenological adaptations also improved the beetles’ abilities to detect when tree defences are impaired, and, where compatible with life history adaptations to other selective forces, for flight to coincide with seasonally predictable host stress agents. We propose a conceptual model, whereby the above mechanisms enable beetles to concentrate on those trees that offer an optimal trade-off between host defence and interspecific competition, along dynamic gradients of tree vigour and stand-level beetle density. We offer suggestions for future research on testing elements of this model.

Résumé

Les scolytes (Coleoptera: Curculionidae: Scolytinae) tiennent des rôles importants dans les écosystèmes tempérés de conifères et y causent aussi de sérieuses pertes économiques. Bien que leurs cycles biologiques soient généralement assez semblables, les différentes espèces diffèrent considérablement par les conditions physiologiques des hôtes qu'elles choisissent. La plupart des quelque 6000 espèces connues colonisent les arbres morts ou soumis à des stress, une ressource qu'ils partagent avec une grande variété d'insectes et d'autres organismes. Un petit nombre d'espèces de scolytes tuent des arbres vivants et sains. Ces dernières sont d'intérêt particulier car elles font compétition directement avec les humains pour les ressources. Nous pensons que la stratégie de tuer les arbres s'est développée lorsqu'une intense compétition interspécifique pour la ressource éphémère et rare d'arbres aux défenses affaiblies a favorisé la sélection de génotypes qui permettaient d’échapper à ces restrictions en attaquant des arbres relativement sains. Ces transitions se sont produites rarement et nous croyons qu'elles ont été facilitées par a) des comportements de sélection des hôtes génétiquement et phénotypiquement flexibles, b) des adaptations biochimiques pour la détoxification d'une gamme étendue de composés de défense et c) des associations avec des symbiontes qui ensemble ont aidé les scolytes à surmonter les formidables défenses constitutives et induites de l'hôte. La capacité de détoxifier les terpènes a influencé le cours de l’évolution de la communication par phéromones. De manière plus spécifique, un système d'attraction du partenaire qui a été exploité par des insectes en compétition intraspécifique pour localiser les hôtes à défenses affaiblies est devenu un système d'attaque coopérative dans lequel ceux qui émettent bénéficient des contributions faites par ceux qui répondent pour ainsi surmonter les défenses. Ce déplacement fonctionnel dans la communication s'est opéré en partie par le lien établi entre la sémiochimie du coléoptère et la chimie de défense de son hôte. Des adaptations comportementales et phénologiques ont aussi amélioré la capacité des coléoptères à discerner quand les défenses de l'arbre sont affaiblies et de faire coïncider leur vol avec les agents de stress de l'hôte prévisibles au cours de la saison, lorsque cela est compatible avec les adaptations du cycle biologique aux autres forces de sélection. Nous proposons un modèle conceptuel dans lequel les mécanismes décrits ci-haut permettent aux coléoptères de se concentrer sur les arbres qui offrent un compromis optimal entre la défense de l'hôte et la compétition interspécifique, le long de gradients dynamiques de vigueur des arbres et de densité des coléoptères dans le peuplement. Nous présentons des suggestions pour des recherches ultérieures pour tester les éléments de ce modèle.

Type
Review
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, A.S., Boone, C.K., Bohlmann, J., Raffa, K.F. 2011. Responses of bark beetle-associated bacteria to host monoterpenes and their relationship to insect life histories. Journal of Chemical Ecology, 37: 808817.CrossRefGoogle ScholarPubMed
Adams, A.S., Currie, C.R., Cardoza, Y., Klepzig, K.D., Raffa, K.F. 2009. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Canadian Journal of Forest Research, 39: 11331147.CrossRefGoogle Scholar
Adams, A.S., Six, D.L., Adams, S.M., Holben, W.E. 2008. In vitro interactions between yeasts and bacteria and the fungal symbionts of the mountain pine beetle (Dendroctonus ponderosae). Microbial Ecology, 56: 460466.CrossRefGoogle ScholarPubMed
Alcock, J. 1982. Natural selection and communication among bark beetles. The Florida Entomologist, 65: 1731.CrossRefGoogle Scholar
Amezaga, I.Rodríguez, M.A. 1998. Resource partitioning of four sympatric bark beetles depending on swarming dates and tree species. Forest Ecology and Management, 109: 127135.CrossRefGoogle Scholar
Amman, G.D. 1975. Abandoned mountain pine beetle galleries in lodgepole pine Research Note INT-197. United States Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, United States of America.Google Scholar
Amman, G.D. 1984. Mountain pine beetle (Coleoptera, Scolytidae) mortality in 3 types of infestations. Environmental Entomology, 13: 184191.CrossRefGoogle Scholar
Anderbrant, O. 1990. Gallery construction and oviposition of the bark beetle Ips typographus (Coleoptera: Scolytidae) at different breeding densities. Ecological Entomology, 15: 18.CrossRefGoogle Scholar
Aukema, B.H.Raffa, K.F. 2004. Does aggregation benefit bark beetles by diluting predation? Links between a group-colonisation strategy and the absence of emergent multiple predator effects. Ecological Entomology, 29: 129138.CrossRefGoogle Scholar
Aukema, B.H., Richards, G.R., Krauth, S.J., Raffa, K.F. 2004. Species assemblage arriving at and emerging from trees colonized by Ips pini in the Great Lakes region: partitioning by time since colonization, season, and host species. Annals of the Entomological Society of America, 97: 117129.CrossRefGoogle Scholar
Aukema, B.H., Werner, R.A., Haberkern, K.E., Illman, B.L., Clayton, M.K., Raffa, K.F. 2005. Quantifying sources of variation in the frequency of fungi associated with spruce beetles: implications for hypothesis testing and sampling methodology in bark beetle–symbiont relationships. Forest Ecology and Management, 217: 187202.CrossRefGoogle Scholar
Aukema, B.H., Zhu, J., Moeller, J., Rasmussen, J., Raffa, K.F. 2010. Interactions between below- and above- ground herbivores drive a forest decline and gap-forming syndrome. Forest Ecology and Management, 259: 374382.CrossRefGoogle Scholar
Ayres, M.P., Wilkens, R.T., Ruel, J.J., Vallery, E. 2000. Fungal relationships and the nitrogen budget of phloem-feeding bark beetles (Coleoptera: Scolytidae). Ecology, 81: 21982210.CrossRefGoogle Scholar
Barkawi, L.S., Francke, W., Blomquist, G.J., Seybold, S.J. 2003. Frontalin: de novo biosynthesis of an aggregation pheromone component by Dendroctonus spp. bark beetles (Coleoptera: Scolytidae). Insect Biochemistry and Molecular Biology, 33: 773788.CrossRefGoogle ScholarPubMed
Beckwith, R.C. 1972. Scolytid flight in white spruce stands in Alaska. The Canadian Entomologist, 104: 19771983.CrossRefGoogle Scholar
Bentz, B.J., Logan, J.A., Amman, G.D. 1991. Temperature dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. The Canadian Entomologist, 123: 10831094.CrossRefGoogle Scholar
Bernays, E.A. 1998. Evolution of feeding behavior in insect herbivores. BioScience, 48: 3544.CrossRefGoogle Scholar
Berryman, A.A. 1972. Resistance of conifers to invasion by bark beetle fungus associations. BioScience, 22: 598602.CrossRefGoogle Scholar
Berryman, A.A. 1973. Population dynamics of the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae). I. Analysis of population behavior and survival from 1964 to 1971. The Canadian Entomologist, 105: 14651488.CrossRefGoogle Scholar
Berryman, A.A. 1979. Dynamics of bark beetle populations: analysis of dispersal and redistribution. Bulletin of the Swiss Entomological Society, 52: 227234.Google Scholar
Berryman, A.A. 1982. Population dynamics of bark beetles. In Bark beetles in North American conifers: a system for the study of evolutionary biology. Edited by J.B. Mitton and K.B. Sturgeon. University of Texas Press, Austin, Texas, United States of America. Pp. 264314.Google Scholar
Berryman, A.A., Dennis, B., Raffa, K.F., Stenseth, N.C. 1985. Evolution of optimal group attack, with particular reference to bark beetles (Coleoptera: Scolytidae). Ecology, 66: 898903.CrossRefGoogle Scholar
Biedermann, P.H.W.Taborsky, M. 2011. Larval helpers and age polyethism in ambrosia beetles. Proceedings of the National Association of Science, 108: 1706417069.CrossRefGoogle ScholarPubMed
Billings, R.F.Cameron, R.S. 1984. Kairomonal responses of Coleoptera, Monochamus titillator (Cerambycidae), Thanasimus dubius (Cleridae), and Temnochila virescens (Trogositidae), to behavioral chemicals of southern pine bark beetles (Coleoptera: Scolytidae). Environmental Entomology, 13: 15421548.CrossRefGoogle Scholar
Björklund, N.Lindgren, B.S. 2009. Diameter of lodgepole pine and mortality caused by the mountain pine beetle: factors that influence the relationship and their applicability for susceptibility rating. Canadian Journal of Forest Research, 39: 908916.CrossRefGoogle Scholar
Björklund, N., Lindgren, B.S., Shore, T.L., Cudmore, T. 2009. Can predicted mountain pine beetle net production be used to improve stand prioritization for management? Forest Ecology and Management, 257: 233237.CrossRefGoogle Scholar
Bleiker, K.P.Lindgren, B.S., Maclauchlan, L.E. 2003. Characteristics of subalpine fir susceptible to attack by western balsam bark beetle (Coleoptera: Scolytidae). Canadian Journal of Forest Research, 33: 15381543.CrossRefGoogle Scholar
Bleiker, K.P., Lindgren, B.S., Maclauchlan, L.E. 2005. Resistance of fast- and slow-growing subalpine fir to pheromone-induced attack by western balsam bark beetle (Coleoptera: Scolytidae). Agricultural and Forest Entomology, 7: 237244.CrossRefGoogle Scholar
Bleiker, K.P.Six, D.L. 2007. Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environmental Entomology, 36: 13841396.CrossRefGoogle Scholar
Blomquist, G.J., Figueroa-Teran, R., Aw, M., Song, M.M., Gorzalski, A., Abbott, N.L., et al. 2010. Pheromone production in bark beetles. Insect Biochemistry and Molecular Biology, 40: 699712.CrossRefGoogle ScholarPubMed
Bohlmann, J., Gershenzon, J., Augbourg, S. 2000. Biochemical, molecular, genetic, and evolutionary aspects of defense-related terpenoids in conifers. Recent Advances in Phytochemistry, 34: 109149.CrossRefGoogle Scholar
Bois, E., Lieutier, F., Yart, A. 1999. Bioassays on Leptographium wingfieldii, a bark beetle associated fungus, with phenolic compounds of Scots pine phloem. European Journal of Plant Pathology, 105: 5160.CrossRefGoogle Scholar
Boone, C.K., Aukema, B.H., Bohlmann, J., Carroll, A.L., Raffa, K.F. 2011. Efficacy of tree defense physiology varies with herbivore population density. Canadian Journal of Forest Research, 41: 11741188.CrossRefGoogle Scholar
Boone, C.K., Six, D.L., Raffa, K.F. 2008. The enemy of my enemy is still my enemy: competitors add to predator load of a tree-killing bark beetle. Agricultural and Forest Entomology, 10: 411421.CrossRefGoogle Scholar
Borden, J.H. 1985. Aggregation pheromones. In Comprehensive insect physiology, biochemistry, and pharmacology. Volume 9. Edited by G.A. Kerkut and L.I. Gilbert. Pergamon Press, Oxford, United Kingdom. Pp. 257285.Google Scholar
Boulanger, Y.Sirois, L. 2007. Postfire succession of saproxylic arthropods, with emphasis on Coleoptera, in the north boreal forest of Quebec. Environmental Entomology, 36: 128141.CrossRefGoogle ScholarPubMed
Bright, D.E.Skidmore, R.E. 2002. A catalog of Scolytidae and Platypodidae (Coleoptera), Suppliment. 2 (1995–1999). NRC Research Press, Ottawa, Ontario, Canada.Google Scholar
Brignolas, F., Lieutier, F., Sauvard, D., Christiansen, E., Berryman, A.A. 1998. Phenolic predictors for Norway spruce resistance to the bark beetle Ips typographus (Coleoptera, Scolytidae) and an associated fungus, Ceratocystis polonica. Canadian Journal of Forest Research, 28: 720728.CrossRefGoogle Scholar
Brown, J.H., Marquet, P.A., Taper, M.L. 1993. Evolution of body size: consequences of an energetic definition of fitness. The American Naturalist, 142: 573584.CrossRefGoogle ScholarPubMed
Byers, J.A. 1993. Avoidance of competition by spruce bark beetles, Ips typographus and Pityogenes chalcographus. Experientia, 49: 272275.CrossRefGoogle Scholar
Byers, J.A.Birgersson, G. 1990. Pheromone production in a bark beetle independent of myrcene precursor in host pine species. Naturwissenschaften, 77: 385387.CrossRefGoogle Scholar
Byers, J.A.Wood, D.L. 1980. Interspecific inhibition of the response of the bark beetles, Dendroctonus brevicomis and Ips paraconfusus, to their pheromones in the field. Journal of Chemical Ecology, 6: 149164.CrossRefGoogle Scholar
Cambui, D.S.Rosas, A. 2012. Density induced transition in a school of fish. Physica A-Statistical Mechanics and its Applications, 391: 39083914.CrossRefGoogle Scholar
Cardoza, Y.J., Klepzig, K.D., Raffa, K.F. 2006. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecological Entomology, 31: 636645.CrossRefGoogle Scholar
Cavallero, L.Raffaele, E. 2010. Fire enhances the ‘competition-free’ space of an invader shrub: Rosa rubiginosa in northwestern Patagonia. Biological Invasions, 12: 33953404.CrossRefGoogle Scholar
Charnov, E.L.Downhower, J.F. 2002. A trade-off-invariant life-history rule for optimal offspring size. Nature, 376: 418419.CrossRefGoogle Scholar
Chen, H.Tang, M. 2001. Spatial and temporal dynamics of bark beetles in Chinese white pine in Qinling Mountains of Shaanxi Province, China. Environmental Entomology, 36: 11241130.CrossRefGoogle Scholar
Choe, J.C.Crespi, B.J. 1997. The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, United Kingdom.CrossRefGoogle Scholar
Christiansen, E.Bakke, A. 1988. The spruce bark beetle of Eurasia. In Dynamics of forest insect populations: patterns, causes, and implications. Edited by A.A. Berryman. Plenum Press, New York, New York, United States of America. Pp. 480505.Google Scholar
Cibrián Tovar, D., Tulio Méndez Montiel, J., Campos Bolañas, R., Yates, H.O. III, Flores Lara, J.E. 1995. Insectos forestales de México – forest insects of Mexico. Publication 6. Universidad Autónoma Chapingo, Chapingo, State of Mexico, Mexico.Google Scholar
Clark, E.L., Carroll, A.L., Huber, D.P.W. 2010. Differences in the constitutive terpene profile of lodgepole pine across a geographical range in British Columbia, and correlation with historical attack by mountain pine beetle. The Canadian Entomologist, 142: 557573.CrossRefGoogle Scholar
Clark, E.L., Carroll, A.L., Huber, D.P.W. 2012. The legacy of attack: implications of high phloem resin monoterpene levels in lodgepole pines following mass attack by mountain pine beetle, Dendroctonus ponderosae Hopkins. Environmental Entomology, 41: 392398.CrossRefGoogle ScholarPubMed
Cognato, A.I., Seybold, S.J., Wood, D.L., Teale, S.A. 1997. A cladistic analysis of pheromone evolution in Ips bark beetles (Coleoptera: Scolytidae). Evolution, 51: 313318.CrossRefGoogle ScholarPubMed
Cook, R.J.Baker, K.F. 1983. The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul, Minnesota, United States of America.Google Scholar
Costa, J.T. 2006. The other insect societies. Harvard University Press, Cambridge, Massachusetts, United States of America.Google Scholar
Costa, J.T.Pierce, N.E. 1997. Social evolution in the Lepidoptera: ecological context and communication in larval socities. In The evolution of social behavior in insects and arachnids. Edited by J.C. Choe and B.J. Crespi. Cambridge University Press, Cambridge, United Kingdom. Pp. 407442.CrossRefGoogle Scholar
Coulson, R.N. 1979. Population dynamics of bark beetles. Annual Review of Entomology, 24: 417447.CrossRefGoogle Scholar
Coulson, R.N., Hennier, P.B., Flamm, R.O., Rykiel, E.J., Hu, L.C., Payne, T.L. 1983. The role of lightning in the epidemiology of the southern pine beetle. Zeitschrift für angewandte Entomologie, 96: 182193.CrossRefGoogle Scholar
Crain, C.M.Bertness, M.D. 2006. Ecosystem engineering across environmental gradients: implications for conservation and management. Bioscience, 56: 211218.CrossRefGoogle Scholar
Cudmore, T.J., Björklund, N., Carroll, A.L., Lindgren, B.S. 2010. Climate change and range expansion of an aggressive bark beetle: evidence of higher reproductive success in naïve host tree populations. Journal of Applied Ecology, 47: 10361043.CrossRefGoogle Scholar
Dahlsten, D.L.Stephen, F.M. 1974. Natural enemies and insect associates of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae), in sugar pine. The Canadian Entomologist, 106: 12111217.CrossRefGoogle Scholar
De Groot, P.Nott, R.W. 2004. Response of the whitespotted sawyer beetle, Monochamus s. scutellatus, and associated woodborers to pheromones of some Ips and Dendroctonus bark beetles. Journal of Applied Entomology, 128: 483487.CrossRefGoogle Scholar
Denno, R.F., McClure, M.S., Ott, J.R. 1995. Interspecific-interactions in phytophagous insects: competition reexamined and resurrected. Annual Review of Entomology, 40: 297331.CrossRefGoogle Scholar
Diguistini, S., Want, Y., Liao, N.Y., Taylor, G., Tanguay, P., Feau, N., et al. 2011. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proceedings of the National Academy of Sciences, 108: 25042509.CrossRefGoogle ScholarPubMed
Dodds, K.J., Graber, C., Stephen, F.M. 2001. Facultative intraguild predation by larval Cerambycidae (Coleoptera) on bark beetle larvae (Coleoptera: Scolytidae). Environmental Entomology, 30: 1722.CrossRefGoogle Scholar
Erbilgin, N.Raffa, K.F. 2001. Modulation of predator attraction to pheromones of two prey species by stereochemistry of plant volatiles. Oecologia, 127: 444453.CrossRefGoogle ScholarPubMed
Evenden, J.C., Bedard, W.E., Struble, G.R. 1943. The mountain pine beetle, an important enemy of western pines. United States Department of Agriculture Circular, 664: 125.Google Scholar
Flamm, R.O., Coulson, R.N., Beckley, P., Pulley, P.E., Wagner, T.L. 1989. Maintenance of a phloem-inhabiting guild. Environmental Entomology, 18: 381387.CrossRefGoogle Scholar
Flechtmann, C.A.H., Dalusky, M.J., Berisford, C.W. 1999. Bark and ambrosia beetle (Coleoptera: Scolytidae) responses to volatiles from aging loblolly pine billets. Environmental Entomology, 28: 638648.CrossRefGoogle Scholar
Franceschi, V.R., Krokene, P., Christiansen, E., Krekling, T. 2005. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytologist, 167: 353375.CrossRefGoogle ScholarPubMed
Furniss, M.M. 1995. Biology of Dendroctonus punctatus (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 88: 173182.CrossRefGoogle Scholar
Furniss, M.M.Kegley, S.J. 2008. Biology of Dendroctonus murrayanae (Coleoptera: Curculionidae: Scolytinae) in Idaho and Montana and comparative taxonomic notes. Annals of the Entomological Society of America, 101: 10101016.CrossRefGoogle Scholar
Furniss, R.L.Carolin, V.M. 1980. Western forest insects. Miscellaneous Publication 1339. United States Department of Agriculture, Forest Service, Washington, District of Columbia, United States of America.Google Scholar
Gara, R.I., Werner, R.A., Whitmore, M.C., Holsten, E.H. 1995. Arthropod associates of the spruce beetle Dendroctonus rufipennis (Kirby) (Col., Scolytidae) in spruce stands of the southcentral and interior Alaska. Journal of Applied Entomology, 119: 585590.CrossRefGoogle Scholar
Goldman, S.E.Franklin, R.T. 1977. Development and feeding habits of southern pine beetle larvae. Annals of the Entomological Society of America, 70: 5456.CrossRefGoogle Scholar
Grégoire, J.C. 1985. Host colonization strategies in Dendroctonus: larval gregariousness vs. mass-attack by adults? In The role of the host in the population dynamics of forest insects, Proceedings of the IUFRO Working Parties S2.07-05 and S2.07-06 Conference, Banff, Canada, September 1983. Edited by L. Safranyik. United States Department of Agriculture, Forest Service and Canadian Forestry Service, Victoria, British Columbia, Canada. Pp. 147–154.Google Scholar
Grégoire, J.C. 1988. The greater European spruce beetle. In Dynamics of forest insect populations: patterns, causes, and implications. Edited by A.A. Berryman. Plenum Press, New York, New York, United States of America. Pp. 456478.Google Scholar
Grégoire, J.C., Braekman, J.C., Tondeur, A. 1982. Chemical communication between the larvae of Dentroctonus micans Kug. (Coleoptera, Scolytidae), Les Mediateurs chimiques. INRA Publications, Versailles, France. Pp. 253257.Google Scholar
Griffin, J.M., Turner, M.G., Simard, M. 2011. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone. Forest Ecology and Management, 261: 10771089.CrossRefGoogle Scholar
Grünwald, M. 1986. Ecological segregation of bark beetles (Coleoptera, Scolytidae) of spruce. Journal of Applied Entomology, 101: 176187.CrossRefGoogle Scholar
Haack, R.A.Lawrence, R.K. 1995. Spring flight of Tomicus piniperda in relation to native Michigan pine bark beetles and their associated predators. In Behavior, population dynamics and control of forest insects. Edited by F.P. Hain, T.L. Payne, K.F. Raffa, S.M. Salom and F.W. Ravlin. Ohio State University Press, Columbus, Ohio, United States of America. Pp. 524535.Google Scholar
Hanski, I. 1987. Colonization of ephemeral habitats. In Colonization, succession and stability. Edited by A.J. Gray, M.J. Crawley and P.J. Edwards. Blackwell Scientific Publications, London, United Kingdom. Pp. 155186.Google Scholar
Hard, J.S. 1985. Spruce beetles attack slowly growing spruce. Forest Science, 31: 839850.Google Scholar
Hedgren, P.O. 2004. The bark beetle Pityogenes chalcographus (L.) (Scolytidae) in living trees: reproductive success, tree mortality and interaction with Ips typographus. Journal of Applied Entomology, 128: 161166.CrossRefGoogle Scholar
Hedgren, P.O. 2007. Early arriving saproxylic beetles (Coleoptera) and parasitoids (Hymenoptera) in low and high stumps of Norway spruce. Forest Ecology and Management, 241: 155161.CrossRefGoogle Scholar
Hodges, J.D., Elam, W.W., Watson, W.F., Nebeker, T.E. 1979. Oleoresin characteristics and susceptibility of four southern pines to southern pine beetle (Coleoptera: Scolytidae) attacks. The Canadian Entomologist, 111: 889896.CrossRefGoogle Scholar
Hofstetter, R., Mahfouz, J., Klepzig, K., Ayres, M. 2005. Effects of tree phytochemistry on the interactions among endophloedic fungi associated with the southern pine beetle. Journal of Chemical Ecology, 31: 539560.CrossRefGoogle ScholarPubMed
Holt, R.D.Barfield, M. 2003. Impacts of temporal variation on apparent competition and coexistence in open ecosystems. Oikos, 101: 4958.CrossRefGoogle Scholar
Horntvedt, R., Christiansen, E., Solheim, H., Wang, S. 1983. Artificial inoculation with Ips typographus-associated blue-stain fungi can kill healthy Norway spruce. Meddelelser fra Norsk Institutt for Skogforskning, 38: 120.Google Scholar
Huber, D.P.W., Aukema, B.H., Hodgkinson, R.S., Lindgren, B.S. 2009. Successful colonization, reproduction, and new generation emergence in live interior hybrid spruce, Picea engelmannii x glauca, by mountain pine beetle, Dendroctonus ponderosae. Agricultural and Forest Entomology, 11: 8389.CrossRefGoogle Scholar
Hui, Y.Xue-Song, D. 1999. Impacts of Tomicus minor on distribution and reproduction of Tomicus piniperda (Col., Scolytidae) on the trunk of the living Pinus yunnanensis trees. Journal of Applied Entomology, 123: 329333.CrossRefGoogle Scholar
Hunt, D.W.A.Borden, J.H. 1988. Response of mountain pine beetle, Dendroctonus ponderosae Hopkins, and pine engraver, Ips pini (Say), to ipsdienol in southwestern British Columbia. Journal of Chemical Ecology, 14: 277293.CrossRefGoogle ScholarPubMed
Hunt, D.W.A.Borden, J.H. 1990. Conversion of verbenols to verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). Journal of Chemical Ecology, 16: 13851397.CrossRefGoogle Scholar
Hynum, B.G.Berryman, A.A. 1980. Dendroctonus ponderosae (Coleoptera, Scolytidae): pre-aggregation landing and gallery initiation on lodgepole pine. The Canadian Entomologist, 112: 185191.CrossRefGoogle Scholar
Jeans Williams, N.Borden, J.H. 2004. Response of Dryocoetes confusus and D. autographus (Coleoptera: Scolytidae) to enantiospecific pheromone baits. The Canadian Entomologist, 136: 419425.CrossRefGoogle Scholar
Jordal, B.H., Sequeira, A.S., Cognato, A.I. 2011. The age and phylogeny of wood boring weevils and the origin of subsociality. Molecular Phylogenetics and Evolution, 59: 708724.CrossRefGoogle ScholarPubMed
Kane, J.M.Kolb, T.E. 2010. Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack. Oecologia, 164: 601609.CrossRefGoogle ScholarPubMed
Kausrud, K.L., Grégoire, J.-C., Skarpsaas, O., Erbilgin, N., Gilbert, M., Økland, B., Stenseth, N.C. 2011. Trees wanted – dead or alive! Host selection and population dynamics in tree-killing bark beetles. PLoS One, 6: e18274. doi:10.1371/journal.pone.0018274.CrossRefGoogle ScholarPubMed
Keeling, C.I.Bohlmann, J. 2006a. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytologist, 170: 657675.CrossRefGoogle ScholarPubMed
Keeling, C.I.Bohlmann, J. 2006b. Diterpene resin acids in conifers. Phytochemistry, 67: 24152423.CrossRefGoogle ScholarPubMed
Keen, F.P. 1938. Insect enemies of western forests. United States Department of Agriculture Miscellaneous Publication, 273: 1280.Google Scholar
Kelley, S.T.Farrell, B.D. 1998. Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae). Evolution, 52: 17311743.CrossRefGoogle ScholarPubMed
Kim, J.-J., Plattner, A., Lim, Y.W., Breuil, C. 2008. Comparison of two methods to assess the virulence of the mountain pine beetle associate, Grosmannia clavigera, to Pinus contorta. Scandinavian Journal of Forest Research, 23: 98104.CrossRefGoogle Scholar
Kirkendall, L.R. 1983. The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae). Zoological Journal of the Linnean Society, 77: 293352.CrossRefGoogle Scholar
Kirkendall, L.R., Kent, D.S., Raffa, K.F. 1997. Interactions among males, females and offspring in bark and ambrosia beetles: the significance of living in tunnels for the evolution of social behavior. In The evolution of social behavior in insects and arachnids. Edited by J.C. Choe and B.J. Crespi. Cambridge University Press, Cambridge, United Kingdom. Pp. 181215.CrossRefGoogle Scholar
Klepzig, K.D., Adams, A.S., Handelsman, J., Raffa, K.F. 2009. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environmental Entomology, 38: 6777.CrossRefGoogle ScholarPubMed
Klepzig, K.D., Flores-Otero, J., Hofstetter, R.W., Ayres, M.P. 2004. Effects of available water on growth and competition of southern pine beetle associated fungi. Mycological Research, 108: 183188.CrossRefGoogle ScholarPubMed
Klepzig, K.D., Smalley, E.B., Raffa, K.F. 1996. Combined chemical defenses against an insect-fungal complex. Journal of Chemical Ecology, 22: 13671388.CrossRefGoogle ScholarPubMed
Knížek, M.Beaver, R. 2004. Taxonomy and systematics of bark and ambrosia beetles. In Bark and wood boring insects in living trees in Europe, a synthesis. Edited by F. Lieutier, K.R. Day, A. Battisti, J.-C. Grégoire and H.F. Evans. Kluwer Academic Publishers, Dordrecht, Netherlands. Pp. 4154.CrossRefGoogle Scholar
Kopper, B.J., Illman, B.L., Kersten, P.J., Klepzig, K.D., Raffa, K.F. 2005. Effects of diterpene acids on components of a conifer bark beetle-fungal interaction: tolerance by Ips pini and sensitivity by its associate Ophiostoma ips. Environmental Entomology, 34: 486493.CrossRefGoogle Scholar
Kopper, B.J., Klepzig, K.D., Raffa, K.F. 2004. Components of antagonism and mutualism in Ips pini–fungal interactions: relationship to a life history of colonizing highly stressed and dead trees. Environmental Entomology, 33: 2834.CrossRefGoogle Scholar
Kurz, W.A., Dymond, C.C., Stinson, G., Rampley, G.J., Neilson, E.T., Carroll, A.L., et al. 2008. Mountain pine beetle and forest carbon: feedback to climate change. Nature, 454: 987990.CrossRefGoogle Scholar
Labandeira, C.C., LePage, B.A., Johnson, A.H. 2001. A Dendroctonus engraving (Coleoptera: Scolytiudae) from a middle Eocene Larix (Coniferales: Pinaceae): early or delayed colonization? American Journal of Batoany, 88: 20262039.CrossRefGoogle ScholarPubMed
Langor, D.W.Raske, A.G. 1988. Mortality factors and life-tables of the eastern larch beetle, Dendroctonus simplex (Coleoptera, Scolytidae), in Newfoundland. Environmental Entomology, 17: 959963.CrossRefGoogle Scholar
Långström, B. 1983. Life cycles and shoot-feeding of the pine shoot beetles. Studia Forestalia Suecica, 163: 129.Google Scholar
Lanier, G.N.Wood, D.L. 1975. Specificity of response to pheromones in the genus Ips (Coleoptera: Scolytidae). Journal of Chemical Ecology, 1: 923.CrossRefGoogle Scholar
Latty, T.M.Reid, M.L. 2009. First in line or first in time? Effects of settlement order and arrival date on reproduction in a group-living beetle Dendroctonus ponderosae. Journal of Animal Ecology, 78: 549555.CrossRefGoogle ScholarPubMed
Lessard, E.D.Schmid, J.M. 1990. Emergence, attack densities, and host relationships for the Douglas-fir beetle (Dendroctonus pseudotsugae Hopkins) in northern Colorado. Western North American Naturalist, 50: 333338.Google Scholar
Lewis, K.J.Lindgren, B.S. 2000. A conceptual model of biotic disturbance ecology in the central interior of B.C.: how forest management can turn Dr. Jekyll into Mr. Hyde. Forestry Chronicle, 76: 433443.CrossRefGoogle Scholar
Lewis, K.J.Lindgren, B.S. 2002. Relationship between spruce beetle and Tomentosus root disease: two natural disturbance agents of spruce. Canadian Journal of Forest Research, 32: 3137.CrossRefGoogle Scholar
Lieutier, F., Yart, A., Sallé, A. 2009. Stimulation of tree defenses by Ophiostomatoid fungi can explain attack success of bark beetles on conifers. Annals of Forest Science, 66: 801823.CrossRefGoogle Scholar
Lindgren, B.S., Lewis, K.J., Grégoire, J.-C. 1999. Notes on the abundance and host preference of Dendroctonus punctatus (Coleoptera: Scolytidae) in spruce forests near Prince George, B.C. Journal of the Entomological Society of British Columbia, 96: 6972.Google Scholar
Lindhe, A.Lindelöw, Å. 2004. Cut high stumps of spruce, birch, aspen and oak as breeding substrates for saproxylic beetles. Forest Ecology and Management, 203: 120.CrossRefGoogle Scholar
Logan, J.A.Powell, J.A. 2001. Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). American Entomologist, 47: 160173.CrossRefGoogle Scholar
Logan, J.A., White, P., Bentz, B.J., Powell, J.A. 1998. Model analysis of spatial patterns in mountain pine beetle outbreaks. Theoretical Population Biology, 53: 236255.CrossRefGoogle ScholarPubMed
Lotan, J.E.Perry, D.A. 1983. Ecology and regeneration of lodgepole pine. Agriculture Handbook 606. United States Department of Agriculture, Washington, District of Columbia, United States of America.Google Scholar
Macías-Sámano, J.E.Borden, J.H. 2000. Interactions between Scolytus ventralis and Pityokteines elegans (Coleoptera: Scolytidae) in Abies grandis. Environmental Entomology, 29: 2834.CrossRefGoogle Scholar
Mattson, W.J. 1980a. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11: 119161.CrossRefGoogle Scholar
Mattson, W.J. 1980b. Cone resources and the ecology of the red pine cone beetle, Conophthorus resinosae (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 73: 390396.CrossRefGoogle Scholar
Mawby, W.D., Hain, F.P., Doggett, C.A. 1989. Endemic and epidemic populations of southern pine beetle: implications of the two-phase model for forest managers. Forest Science, 35: 10751087.Google Scholar
McNee, W.R., Wood, D.L., Storer, A.J. 2000. Pre-emergence feeding in bark beetles (Coleoptera: Scolytidae). Environmental Entomology, 29: 495501.CrossRefGoogle Scholar
Menge, B.A.Sutherland, J.P. 1987. Community regulation – variation in disturbance, competition, and predation in relation to environmental-stress and recruitment. American Naturalist, 130: 730757.CrossRefGoogle Scholar
Miller, D.R.Borden, J.H. 1992. (S)-(+)-Ipsdienol: interspecific inhibition of Ips latidens (LeConte) by Ips pini (Say) (Coleoptera: Scolytidae). Journal of Chemical Ecology, 18: 15771582.CrossRefGoogle Scholar
Miller, J.M.Keen, F.P. 1960. Biology and control of the western pine beetle. Miscellaneous Publication 800. United States Department of Agriculture, Forest Service, Washington, DC, United States of America.Google Scholar
Mills, N.J. 1986. A preliminary analysis of the dynamics of within tree populations of Ips typographus (L) (Coleoptera, Scolytidae). Journal of Applied Entomology, 102: 402416.CrossRefGoogle Scholar
Morales-Jiménez, J., Zúñiga, G., Villa-Tanaca, L., Hernández-Rodríguez, C. 2009. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microbial Ecology, 58: 879891.CrossRefGoogle ScholarPubMed
Moser, J.C., Thatcher, R.C., Pickard, L.S. 1971. Relative abundance of southern pine beetle associates in East Texas. Annals of the Entomological Society of America, 64: 7277.CrossRefGoogle Scholar
Ng, W.L.Bassler, B.L. 2009. Bacterial quorum-sensing network architectures. Annual Review of Genetics, 43: 197222.CrossRefGoogle ScholarPubMed
Olsson, J., Jonsson, B.G., Hjältén, J., Ericson, L. 2011. Addition of coarse woody debris – the early fungal succession on Picea abies logs in managed forests and reserves. Biological Conservation, 144: 11001110.CrossRefGoogle Scholar
Paine, T.D., Birch, M.C., Svihra, P. 1981. Niche breadth and resource partitioning by four sympatric species of bark beetles (Coleoptera: Scolytidae). Oecologia, 48: 16.CrossRefGoogle ScholarPubMed
Paine, T.D., Raffa, K.F., Harrington, T.C. 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annual Review of Entomology, 42: 179206.CrossRefGoogle ScholarPubMed
Peverieri, G.S., Faggi, M., Marziali, L., Tiberi, R. 2008. Life cycle of Tomicus destruens in a pine forest of central Italy. Bulletin of Insectology, 61: 337342.Google Scholar
Plattner, A., Kim, J.-J., Diguistini, S., Breuil, C. 2008. Variation in pathogenicity of a mountain pine beetle-associated blue-stain fungus, Grosmannia clavigera, on young lodgepole pine in British Columbia. Canadian Journal of Plant Pathology, 30: 110.CrossRefGoogle Scholar
Poland, T.M.Borden, J.H. 1994. Semiochemical-based communication in interspecific interactions between Ips pini (Say) and Pityogenes knechteli (Swaine) (Coleoptera: Scolytidae) in lodgepole pine. The Canadian Entomologist, 126: 269276.CrossRefGoogle Scholar
Poland, T.M.Borden, J.H. 1998a. Competitive exclusion of Dendroctonus rufipennis induced by pheromones of Ips tridens and Dryocoetes affaber (Coleoptera: Scolytidae). Journal of Economic Entomology, 91: 11501161.CrossRefGoogle Scholar
Poland, T.M.Borden, J.H. 1998b. Disruption of secondary attraction of the spruce beetle, Dendroctonus rufipennis, by pheromones of two sympatric species. Journal of Chemical Ecology, 24: 151166.CrossRefGoogle Scholar
Pope, D.N., Coulson, R.N., Fargo, W.S., Gagne, J.A.Kelly, C.W. 1980. The allocation process and between-tree survival probabilities in Dendroctonus frontalis infestations. Researches on Population Ecology, 22: 197210.CrossRefGoogle Scholar
Popp, M.P., Johnson, J.D., Massey, T.L. 1991. Stimulation of resin flow in slash and loblolly pine by bark beetle vectored fungi. Canadian Journal of Forest Research, 21: 11241126.CrossRefGoogle Scholar
Powell, E.N., Townsend, P.A., Raffa, K.F. 2012. Wildfire provides refuge from local extinction but is an unlikely driver of outbreaks by mountain pine beetle. Ecological Monographs, 82: 6984.CrossRefGoogle Scholar
Powell, J.A.Bentz, B.J. 2009. Connecting phenological predictions with population growth rates for mountain pine beetle, an outbreak insect. Landscape Ecology, 24: 657672.CrossRefGoogle Scholar
Pureswaran, D.S., Gries, R., Borden, J.H., Pierce, H.D. Jr 2000. Dynamics of pheromone production and communication in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). Chemoecology, 10: 153168.CrossRefGoogle Scholar
Pureswaran, D.S., Sullivan, B.T., Ayres, M.P. 2006. Fitness consequences of pheromone production and host selection strategies in a tree-killing bark beetle (Coleoptera: Curculionidae: Scolytinae). Oecologia, 148: 720728.CrossRefGoogle Scholar
Raffa, K.F. 1988. Host orientation behavior of Dendroctonus ponderosae: integration of token stimuli and host defenses. In Mechanisms of woody plant resistance to insects and pathogens. Edited by W.J. Mattson, J. Levieux and C. Bernard-Dagan. Springer-Verlag, New York, New York, United States of America. Pp. 369390.Google Scholar
Raffa, K.F. 2001. Mixed messages across multiple trophic levels: the ecology of bark beetle chemical communication systems. Chemoecology, 11: 4965.CrossRefGoogle Scholar
Raffa, K.F., Aukema, B.H., Bentz, B.J., Carroll, A.L., Hicke, J.A., Turner, M.G., et al. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience, 58: 501517.CrossRefGoogle Scholar
Raffa, K.F., Aukema, B.H., Erbilgin, N., Klepzig, K.D., Wallin, K.F. 2005. Interactions among conifer terpenoids and bark beetles across multiple levels of scale: an attempt to understand links between population patterns and physiological processes. Recent Advances in Phytochemistry, 39: 80118.Google Scholar
Raffa, K.F.Berryman, A.A. 1982. Gustatory cues in the orientation of Dendroctonus ponderosae (Coleoptera: Scolytidae) to host trees. The Canadian Entomologist, 114: 97104.CrossRefGoogle Scholar
Raffa, K.F.Berryman, A.A. 1983. The role of host plant resistance in the colonization behavior and ecology of bark beetles. Ecological Monographs, 53: 2749.CrossRefGoogle Scholar
Raffa, K.F.Berryman, A.A. 1987. Interacting selective pressures in conifer-bark beetle systems: a basis for reciprocal adaptations? American Naturalist, 129: 234262.CrossRefGoogle Scholar
Raffa, K.F., Hobson, K.R., LaFontaine, S., Aukema, B.H. 2007. Can chemical communication be cryptic? Adaptations by herbivores to natural enemies exploiting prey semiochemistry. Oecologia, 153: 10091019.CrossRefGoogle ScholarPubMed
Raffa, K.F., Phillips, T.W., Salom, S.M. 1993. Strategies and mechanisms of host colonization by bark beetles. In Beetle–pathogen interactions in conifer forests. Edited by T.D. Schowalter and G.M. Filip. Academic Press, San Diego, California, United States of America. Pp. 103128.Google Scholar
Rankin, L.J.Borden, J.H. 1991. Competitive interactions between the mountain pine beetle and the pine engraver in lodgepole pine. Canadian Journal of Forest Research, 21: 10291036.CrossRefGoogle Scholar
Reeve, J.D., Rhodes, D.J., Turchin, P. 1998. Scramble competition in the southern pine beetle, Dendroctonus frontalis. Ecological Entomology, 23: 433443.CrossRefGoogle Scholar
Reid, M.R.Purcell, J.R.C. 2011. Condition-dependent tolerance of monoterpenes in an insect herbivore. Arthropod–Plant Interactions, 5: 331337.CrossRefGoogle Scholar
Reid, R.W., Whitney, H.S., Watson, J.A. 1967. Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue stain fungi. Canadian Journal of Botany, 45: 11151126.CrossRefGoogle Scholar
Rhome, R.Del Poeta, M. 2009. Lipid signaling in pathogenic fungi. Annual Review of Microbiology, 63: 119131.CrossRefGoogle ScholarPubMed
Roitberg, B.D., Robertson, I.C., Tyerman, J.G.A. 1999. Vive la variance: a functional oviposition theory for insect herbivores. Entomologia Experimentalis et Applicata, 91: 187194.CrossRefGoogle Scholar
Romme, W.H., Knight, D.H., Yavitt, J.B. 1986. Mountain pine beetle outbreaks in the Rocky Mountains: regulators of primary productivity? The American Naturalist, 127: 484494.Google Scholar
Rosner, S.Hannrup, B. 2004. Resin canal traits relevant for constitutive resistance of Norway spruce against bark beetles: environmental and genetic variability. Forest Ecology and Management, 200: 7787.CrossRefGoogle Scholar
Rudinsky, J.A. 1962. Ecology of Scolytidae. Annual Review of Entomology, 7: 327348.CrossRefGoogle Scholar
Ruel, J.J., Ayres, M.P., Lorio, P.L. 1998. Loblolly pine responds to mechanical wounding with increased resin flow. Canadian Journal of Forest Research, 28: 596602.CrossRefGoogle Scholar
Ryker, L.C. 1984. Acoustic and chemical signals in the life cycle of a beetle. Scientific American, 250: 112123.CrossRefGoogle Scholar
Ryker, L.C.Rudinsky, J.A. 1976. Sound production in Scolytidae: aggressive and mating behavior of the mountain pine beetle. Annals of the Entomological Society of America, 69: 677680.CrossRefGoogle Scholar
Safranyik, L. 1988. The population biology of the spruce beetle in western Canada and implications for management. In Integrated control of scolytid beetles. Edited by T.L. Payne and H. Saarenma. College of Agriculture and Life Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America. Pp. 323.Google Scholar
Safranyik, L.Carroll, A.L. 2006. The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. In The mountain pine beetle: a synthesis of its biology and management in lodgepole pine. Edited by L. Safranyik and B. Wilson. Natural Resources Canada, Canadian Forest Service, Victoria, British Columbia, Canada. Pp. 366.Google Scholar
Safranyik, L.Carroll, A.L., Régnière, J., Langor, D.W., Riel, W.G., Shore, T.L., et al. 2010. Potential for range expansion of mountain pine beetle into the boreal forest of North America. The Canadian Entomologist, 142: 415442.CrossRefGoogle Scholar
Safranyik, L.Linton, D.A. 1985. Influence of competition on size, brood production and sex ratio in spruce beetles (Coleoptera: Scolytidae). Journal of the Entomological Society of British Columbia, 82: 5256.Google Scholar
Safranyik, L., Shore, T.L., Carroll, A.L., Linton, D.A. 2004. Bark beetle (Coleoptera: Scolytidae) diversity in spaced and unmanaged mature lodgepole pine (Pinaceae) in southeastern British Columbia. Forest Ecology and Management, 200: 2338.CrossRefGoogle Scholar
Safranyik, L., Shore, T.L., Linton, D.A. 1996. Ipsdienol and lanierone increase Ips pini Say (Coleoptera: Scolytidae) attack and brood density in lodgepole pine infested by mountain pine beetle. The Canadian Entomologist, 128: 199207.CrossRefGoogle Scholar
Safranyik, L., Shore, T.L., Linton, D.A. 1998. Effects of baiting lodgepole pines naturally attacked by the mountain pine beetle with Ips pini (Coleoptera: Scolytidae) pheromone on mountain pine beetle brood production. Journal of the Entomological Society of British Columbia, 95: 9597.Google Scholar
Safranyik, L., Shrimpton, D.M., Whitney, H.S. 1975. An interpretation of the interaction between lodgepole pine, the mountain pine beetle and its associated blue stain fungi in western Canada. In Management of lodgepole pine ecosystems. Edited by D.M. Baumgartner. Washington State University Press, Pullman, Washington, United States of America. Pp. 406428.Google Scholar
Saint-Germain, M., Buddle, C.M., Drapeau, P. 2007. Primary attraction and random landing in host-selection by wood-feeding insects: a matter of scale? Agricultural and Forest Entomology, 9: 227235.CrossRefGoogle Scholar
Schleucher, E. 1993. Life in extreme dryness and heat – a telemetric study of the behavior of the diamond dove Geopelia cuneata in its natural habitat. Emu, 93: 251258.CrossRefGoogle Scholar
Schlyter, F.Anderbrant, O. 1993. Competition and niche separation between two bark beetles: existence and mechanisms. Oikos, 68: 437447.CrossRefGoogle Scholar
Schlyter, F.Birgersson, G. 1999. Forest beetles. In Pheromones of non-lepidopteran insects associated with agricultural plants. Edited by R.J. Hardie and A.K. Minks. CAB International, Wallingford, United Kingdom. Pp. 113148.Google Scholar
Schmitt, J.J., Nebeker, T.E., Blanche, C.A., Hodges, J.D. 1988. Physical properties and monoterpene composition of xylem oleoresin along the bole of Pinus taeda in relation to southern pine beetle attack distribution. Canadian Journal of Botany, 66: 156160.CrossRefGoogle Scholar
Schroeder, L.M. 2001. Tree mortality by the bark beetle Ips typographus (L.) in storm-disturbed stands. Integrated Pest Management Reviews, 6: 169175.CrossRefGoogle Scholar
Schroeder, L.M.Weslien, J. 1994. Interactions between the phloem-feeding species Tomicus piniperda (Col.: Scolytidae) and Acanthocinus aedilis (Col.: Cerambycidae), and the predator Thanasimus formicarius (Col.: Cleridae) with special reference to brood production. Entomophaga, 39: 149157.CrossRefGoogle Scholar
Scott, J.J., Oh, D.-C., Yuceer, M.C., Klepzig, K.D., Clardy, J., Currie, C.R. 2008. Bacterial protection of beetle-fungus mutualism. Science, 322: 63.CrossRefGoogle ScholarPubMed
Sequeira, A.S.Farrell, B.D. 2001. Evolutionary origins of Gondwanan interactions: how old are Araucaria beetle herbivores? Biological Journal of the Linnean Society, 74: 459474.CrossRefGoogle Scholar
Sequeira, A.S., Normark, B.B., Farrell, B.D. 2000. Evolutionary assembly of the conifer fauna: distinguishing ancient from recent associations in bark beetles. Proceedings of the Royal Society of London, Series B, 267: 23592366.CrossRefGoogle ScholarPubMed
Seybold, S.J., Bohlmann, J., Raffa, K.F. 2000. Biosynthesis of coniferophagous bark beetle pheromones and conifer isoprenoids: evolutionary perspective and synthesis. The Canadian Entomologist, 132: 697753.CrossRefGoogle Scholar
Seybold, S.J., Huber, D.P.W., Lee, J.C., Graves, A.D., Bohlmann, J. 2006. Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochemistry Review, 5: 143178.CrossRefGoogle Scholar
Shepherd, R.F. 1966. Factors influencing the orientation and rates of activity of Dendroctonus ponderosae (Coleoptera: Scolytidae). The Canadian Entomologist, 98: 507518.CrossRefGoogle Scholar
Simpson, S.J., McCaffery, A.R., Haegele, B.F. 1999. A behavioural analysis of phase change in the desert locust. Biological Reviews, 74: 461480.CrossRefGoogle Scholar
Six, D.L. 2003. Bark beetle-fungus symbiosis. In Insect symbiosis. Edited by T. Miller and K. Kourtzis. CRC Press, Boca Raton, Florida, United States of America. Pp. 99116.Google Scholar
Six, D.L.Klepzig, K.D. 2004. Dendroctonus bark beetles as model systems for studies on symbiosis. Symbiosis, 37: 207232.Google Scholar
Six, D.L.Paine, T.D. 1999. Phylogenetic comparison of ascomycete mycangial fungi and Dendroctonus bark beetles (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 92: 159166.CrossRefGoogle Scholar
Six, D.L.Wingfield, M.J. 2011. The role of phytopathogenicity in bark beetle–fungus symbioses: a challenge to the classic paradigm. Annual Review of Entomology, 56: 255272.CrossRefGoogle Scholar
Smith, G.D., Carroll, A.L., Lindgren, B.S. 2009. The life history of a secondary bark beetle, Pseudips mexicanus (Coleoptera: Curculionidae: Scolytinae), in lodgepole pine. The Canadian Entomologist, 141: 5669.CrossRefGoogle Scholar
Smith, G.D., Carroll, A.L., Lindgren, B.S. 2011. Facilitation in bark beetles: endemic mountain pine beetle gets a helping hand (Coleoptera: Curculionidae: Scolytinae). Agricultural and Forest Entomology, 13: 3743.CrossRefGoogle Scholar
Southwood, T.R.E. 1985. Interactions of plants and animals: patterns and processes. Oikos, 44: 511.CrossRefGoogle Scholar
Squillace, A.E. 1976. Analyses of monoterpenes of conifers by gas-liquid chromatography. In Modern methods in forest genetics. Edited by J.P. Miksche. Springer-Verlag, New York, New York, United States of America. Pp. 120157.CrossRefGoogle Scholar
Stark, R.W.Borden, J.H. 1965. Observations on mortality factors of the fir engraver beetle, Scolytus ventralis (Coleoptera: Scolytidae). Journal of Economic Entomology, 58: 11621163.CrossRefGoogle Scholar
Stephen, F.M.Dahlsten, D.L. 1976. The arrival sequence of the arthropod complex following attack by Dendroctonus brevicomis (Coleoptera: Scolytidae) in ponderosa pine. The Canadian Entomologist, 108: 283304.CrossRefGoogle Scholar
Storer, A.J.Speight, M.R. 1996. Relationships between Dendroctonus micans Kug (Coleoptera: Scolytidae) survival and development and biochemical changes in Norway spruce, Picea abies (L) Karst, phloem caused by mechanical wounding. Journal of Chemical Ecology, 22: 559573.CrossRefGoogle Scholar
Storer, A., Wainhouse, D., Speight, M. 1997. The effect of larval aggregation behaviour on larval growth of the spruce bark beetle Dendroctonus micans. Ecological Entomology, 22: 109115.CrossRefGoogle Scholar
Stoszek, K.J.Rudinsky, J.A. 1967. Injury of Douglas-fir trees by maturation feeding of the Douglas-fir hylesinus, Pseudohylesinus nebulosus (Coleoptera: Scolytidae). The Canadian Entomologist, 99: 310311.CrossRefGoogle Scholar
Sullivan, B.T., Dalusky, M.J., Mori, K., Brownie, C. 2011. Variable responses by southern pine beetle, Dendroctonus frontalis Zimmermann, to the pheromone component endo-brevicomin: influence of enantiomeric composition, release rate, and proximity to infestations. Journal of Chemical Ecology, 37: 403411.CrossRefGoogle Scholar
Symonds, M.R.E.Elgar, M.A. 2004. The mode of pheromone evolution: evidence from bark beetles. Proceedings of the Royal Society of London, Series B, 271: 839846.CrossRefGoogle ScholarPubMed
Turchin, P., Taylor, A.D., Reeve, J.D. 1999. Dynamical role of predators in population cycles of a forest insect: an experimental test. Science, 285: 10681070.CrossRefGoogle ScholarPubMed
Wallin, K.F.Raffa, K.F. 2000. Influences of external chemical cues and internal physiological parameters on the multiple steps of post-landing host selection behavior of Ips pini (Coleoptera: Scolytidae). Environmental Entomology, 29: 442453.CrossRefGoogle Scholar
Wallin, K.F.Raffa, K.F. 2004. Feedback between individual host selection behavior and population dynamics in an eruptive insect herbivore. Ecological Monographs, 74: 101116.CrossRefGoogle Scholar
Wallin, K.F., Rutledge, J., Raffa, K.F. 2002. Heritability of host acceptance and gallery construction behaviors of the bark beetle Ips pini (Coleoptera: Scolytidae). Environmental Entomology, 31: 12761281.CrossRefGoogle Scholar
Waring, R.H.Pitman, G.B. 1985. Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology, 66: 889897.CrossRefGoogle Scholar
Wermelinger, B., Duelli, P., Obrist, M.K. 2002. Dynamics of saproxylic beetles (Coleoptera) in windthrow areas in alpine spruce forests. Forest Snow and Landscape Research, 77: 133148.Google Scholar
Werner, R.A., Holsten, E.H., Matsuoka, S.M., Burnside, R.E. 2006. Spruce beetles and forest ecosystems in south-central Alaska: a review of 30 years of research. Forest Ecology and Management, 227: 195206.CrossRefGoogle Scholar
Wicklow, D.T. 1992. Interference competition. In The fungal community. Its organization and role in the ecosystem, 2nd edition. Edited by G.C. Carroll and D. T. Wicklow. Marcel Dekker Inc., New York, New York. Pp. 265274.Google Scholar
Wilson, E.O. 1971. The insect societies. Harvard University Press, Cambridge, Massachusetts, United States of America.Google Scholar
Wood, D.L. 1982. The role of pheromones, kairomones, and allomones in the host selection behavior of bark beetles. Annual Review of Entomology, 27: 411446.CrossRefGoogle Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs, 6: 11359.Google Scholar
Wright, L.C., Berryman, A.A., Wickman, B.E. 1984. Abundance of the fir engraver, Scolytus ventralis, and the Douglas-fir beetle, Dendroctonus pseudotsugae, following tree defoliation by the Douglas-fir tussock moth, Orgyia pseudotsugata. The Canadian Entomologist, 116: 293305.CrossRefGoogle Scholar
Yanchuk, A.D., Murphy, J.C., Wallin, K.F. 2008. Evaluation of genetic variation of attack and resistance in lodgepole pine in the early stages of a mountain pine beetle outbreak. Tree Genetics and Genomes, 4: 171180.CrossRefGoogle Scholar
Zhao, T., Krokene, P., Hu, J., Christiansen, E., Björklund, N., Långström, B., Solheim, H., Borg-Karlson, A.-K. 2011. Induced terpene accumulation in Norway spruce inhibits bark beetle colonization in a dose-dependent manner. Plos One, 6: e26649. doi:10.1371/journal.pone.0026649.CrossRefGoogle ScholarPubMed
Zuber, M.Benz, G. 1992. Untersuchungen über das Schwärmverhalten von Ips typographus (L.) und Pityogenes chalcographus (L.) (Col., Scolytidae) mit den Pheromonpräparaten Pheroprax und Chalcoprax. Journal of Applied Entomology, 113: 430436.CrossRefGoogle Scholar