Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-09T11:53:08.389Z Has data issue: false hasContentIssue false

A two-dimensional axially-symmetric model of keyhole and melt pool dynamics during spot laser welding

Published online by Cambridge University Press:  18 April 2013

M. Courtois
Affiliation:
ArcelorMittal Global R&D Montataire, France. e-mail: mickael.courtois@univ-ubs.fr LIMATB Université de Bretagne-Sud Lorient, France
M. Carin
Affiliation:
LIMATB Université de Bretagne-Sud Lorient, France
P. Le Masson
Affiliation:
LIMATB Université de Bretagne-Sud Lorient, France
S. Gaied
Affiliation:
ArcelorMittal Global R&D Montataire, France. e-mail: mickael.courtois@univ-ubs.fr
Get access

Abstract

For a better understanding of the physical phenomena associated with the appearance of defects in laser welding, a heat and fluid flow model is developed using Comsol Multiphysics®. This first step of the project is focused on the modeling of a static laser shot on a sample of steel. This 2D axially-symmetric configuration is used to study the main physical phenomena related to the creation of the keyhole. This model takes into account the three phases of the matter: the vaporized metal, the liquid phase and the solid base. To track the evolution of these three phases, coupled equations of energy and momentum are solved. The liquid/vapor interface is tracked using the Level-Set method. The calculated velocity and free surface deformation are analyzed. Melt pool shapes are compared with experimental macrographs and the influence of some parameters such as laser power is discussed.

Type
Research Article
Copyright
© EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Medale, M., Xhaard, C., Fabbro, R., C. R. Mecanique 335 (2007) 280-286
Lee, J., Ko, S., Farson, D., Yoo, C., J. Phys. D 35 (2002) 1570-1576
Ki, H., Mohanty, P., Mazumder, J., Metall. Mater. Trans. A 33 (2002) 1817-1830
Geiger, M., Leitz, K.H., Koch, H., Otto, A., Prod. Eng. Res. Devel. 3 (2009) 127-136
S. Pang, L. Chen, J. Zhou, Y. Yin, T. Chen, J. Phys. D 44 (2011)
Osher, S., Sethian, J.A., J. Comput. Phys. 79 (1988) 12-49
Fabbro, R., Slimani, S., Coste, F., Briand, F., J. Phys. D 38 (2005) 1881-1887
K. Hirano, R. Fabbro, M. Muller, J. Phys. D 44 (2011)
M. Sajid, Ph.D. thesis, University of Cergy Pontoise, 2010, France
Esmaeeli, A., Tryggvason, G., Int. J. Heat Mass Trans. 47 (2004) 5451-5461
C. Mas, Modélisation physique du procédé de découpe de métaux par laser, Thèse, Université de Paris 6, 2003
K. Chouf, Étude du comportement du capillaire en régime de soudage laser forte pénétration, Thèse, Université de Paris XIII, 2002
Girard, K., Jouvard, J., Naudy, Ph., J. Phys. D 33 (2000) 2815-2824
R. Fabbro, S. Slimani, F. Coste, F. Briand, Analysis of the various melt pool hydrodynamic regimes observed during CW Nd-YAG penetration laser welding, ICALEO Conference 2007, Orlando, USA