Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T21:50:27.326Z Has data issue: false hasContentIssue false

Synthesis of DNA-encapsulated silica elaborated by sol–gel routes

Published online by Cambridge University Press:  28 September 2012

Derya Kapusuz
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University, 06531 Ankara, Turkey
Caner Durucan*
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University, 06531 Ankara, Turkey
*
a)Address all correspondence to this author. e-mail: cdurucan@metu.edu.tr
Get access

Abstract

The highly specific functions of DNA can be used for designing novel functional materials. However, aqueous solubility and biochemical instability of DNA impede its direct utilization as a functional component. Herein, preparation of a hybrid material encapsulating the DNA molecules (double-stranded salmon sperm, 50–5000 base pairs) in robust host—sol–gel-derived silica—has been described. The encapsulation was carried out in two steps: hydrolysis of an acidic tetraethylorthosilicate [Si(OC2H5)4] sol and was followed by condensation near physiological pH upon addition of alkaline DNA-containing solutions. The gelation behavior and structural properties of the DNA–silica hybrids were investigated by 29Si nuclear magnetic resonance and by nitrogen adsorption. The selective adsorption of a DNA-interactive reagent molecule (ethidium bromide) in their diluted aqueous solutions on DNA–silica hybrids confirmed that the DNA molecules remained entrapped within the silica host without any deterioration. A DNA encapsulation mechanism correlating the silica microstructure and DNA holding efficiency has been proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Braun, S., Rappoport, S., Zusman, R., Avnir, D., and Ottolenghi, M.: Biochemically active sol–gel glasses: The trapping of enzymes. Mater. Lett. 10, 15 (1990).CrossRefGoogle Scholar
Avnir, D., Braun, S., Lev, O., and Ottolenghi, M.: Enzymes and other proteins entrapped in sol–gel materials. Chem. Mater. 6, 16051614 (1994).CrossRefGoogle Scholar
Gill, I. and Ballesteros, A.: Encapsulation of biologicals within silicate, siloxane, and hybrid sol–gel polymers: An efficient and generic approach. J. Am. Chem. Soc. 120, 85878598 (1998).CrossRefGoogle Scholar
Gill, I. and Ballesteros, A.: Bioencapsulation within synthetic polymers (Part 1): Sol–gel encapsulated biologicals. Trends Biotechnol. 18, 282296 (2000).CrossRefGoogle ScholarPubMed
Carturan, G., Campostrini, R., Dire, S., Scardi, V., and Dealteriis, E.: Inorganic gels for immobilization of biocatalysts—inclusion of invertase-active whole cell of yeast (saccharomyces-cerevisiae) into thin-layers of gel deposited on glass sheets. J. Mol. Catal. 57, L13L16 (1989).CrossRefGoogle Scholar
Pope, E.J.A.: Gel encapsulated microorganisms–saccharomyces-cerevisiae-silica–gel biocomposites. J. Sol-Gel Sci. Technol. 4, 225229 (1995).CrossRefGoogle Scholar
Dave, B.C., Dunn, B., Valentine, J.S., and Zink, J.I.: Sol–gel encapsulation methods for biosensors. Anal. Chem. 66, A1120A1127 (1994).CrossRefGoogle Scholar
Brennan, J.D.: Using intrinsic fluorescence to investigate proteins entrapped in sol–gel derived materials. Appl. Spectrosc. 53, 106A121A (1999).CrossRefGoogle Scholar
Lin, J. and Brown, C.W.: Sol–gel glass as a matrix for chemical and biochemical sensing. TrAC, Trends Anal. Chem. 16, 200211 (1997).CrossRefGoogle Scholar
Mann, S., Burkett, S.L., Davis, S.A., Fowler, C.E., Mendelson, N.H., Sims, S.D., Walsh, D., and Whilton, N.T.: Sol–gel synthesis of organized matter. Chem. Mater. 9, 23002310 (1997).CrossRefGoogle Scholar
Estroff, L.A. and Hamilton, A.D.: At the interface of organic and inorganic chemistry: Bioinspired synthesis of composite materials. Chem. Mater. 13, 32273235 (2001).CrossRefGoogle Scholar
Weiner, S. and Addadi, L.: Design strategies in mineralized biological materials. J. Mater. Chem. 5, 689702 (1997).CrossRefGoogle Scholar
Böttcher, H., Slowik, P., and Suss, W.: Sol–gel carrier systems for controlled drug delivery. J. Sol-Gel Sci. Technol. 13, 277281 (1998).CrossRefGoogle Scholar
Avnir, D., Coradin, T., Lev, O., and Livage, J.: Recent bio-applications of sol-gel materials. J. Mater. Chem. 16, 10131030 (2006).CrossRefGoogle Scholar
Ledley, F.D.: Pharmaceutical approach to somatic gene therapy. Pharm. Res. 13, 15951614 (1996).CrossRefGoogle ScholarPubMed
Flotte, T.R. and Carter, B.J.: Adeno-associated virus vectors for gene therapy of cystic fibrosis. Methods Enzymol. 292, 717732 (1998).CrossRefGoogle ScholarPubMed
Mah, C., Byrne, B.J., and Flotte, T.R.: Virus-based gene delivery systems. Clin. Pharmacokinet. 41, 901911 (2002).CrossRefGoogle ScholarPubMed
Schatzlein, A.G.: Non-viral vectors in cancer gene therapy: Principles and progress. Anti-Cancer Drug 12, 275304 (2001).CrossRefGoogle ScholarPubMed
Rettig, G.R. and Rice, K.G.: Non-viral gene delivery: From the needle to the nucleus. Expert Opin. Biol. Ther. 7, 799808 (2007).CrossRefGoogle ScholarPubMed
Hosseinkhani, H., Aoyama, T., Ogawa, O., and Tabata, Y.: Ultrasound enhances the transfection of plasmid DNA by non-viral vectors. Curr. Pharm. Biotechnol. 4, 109122 (2003).CrossRefGoogle ScholarPubMed
Fidanza, J., Glazer, M., Mutnick, D., McGall, G., and Frank, C.: High capacity substrates as a platform for a DNA probe array genotyping assay. Nucleosides Nucleotides Nucleic Acids 20, 533538 (2001).CrossRefGoogle ScholarPubMed
Glazer, M., Fidanza, J., McGall, G., and Frank, C.: Colloidal silica films for high-capacity DNA probe arrays. Chem. Mater. 13, 47734782 (2001).CrossRefGoogle Scholar
Rupcich, N., Goldstein, A., and Brennan, J.D.: Optimization of sol-gel formulations and surface treatments for the development of pin-printed protein microarrays. Chem. Mater. 15, 18031811 (2003).CrossRefGoogle Scholar
Breadmore, M.C., Wolfe, K.A., Arcibal, I.G., Leung, W.K., Dickson, D., Giordano, B.C., Power, M.E., Ferrance, J.P., Feldman, S.H., Norris, P.M., and Landers, J.P.: Microchip-based purification of DNA from biological samples. Anal. Chem. 75, 18801886 (2003).CrossRefGoogle ScholarPubMed
Phinney, J.R., Conroy, J.F., Hosticka, B., Power, M.E., Ferrance, J.P., Landers, J.P., and Norris, M.P.: The design and testing of a silica sol-gel-based hybridization array. J. Non-Cryst. Solids 350, 3945 (2004).CrossRefGoogle Scholar
Durucan, C. and Pantano, C.G.: Hybrid sol/gel coatings for DNA arrays and other lab-on-a-chip applications. In Handbook Sol-Gel Science Vol. III: Applications of Sol-Gel Technology, Sakka, S., Almeida, R.M., and Kozuka, H. ed.; Kluwer Academic Publishers: New York, 2004; pp. 551575.Google Scholar
Pierre, A., Bonnet, J., Vekris, A., and Portier, J.: Encapsulation of deoxyribonucleic acid molecules in silica and hybrid organic-silica gels. J. Mater. Sci. - Mater. Med. 12, 5155 (2001).CrossRefGoogle ScholarPubMed
Numata, M., Sugiyasu, K., Hasegawa, T., and Shinkai, S.: Sol-gel reaction using DNA as a template: An attempt toward transcription of DNA into inorganic materials. Angew. Chem. Int. Ed. 43, 32793283 (2004).CrossRefGoogle ScholarPubMed
Shinkai, S., Takeuchi, M., and Bae, A.H.: Rational design and creation of novel polymeric superstructures by oxidative polymerization utilizing anionic templates. Supramol. Chem. 17, 181186 (2005).CrossRefGoogle Scholar
Shen, Y., Mackey, G., Rupcich, N., Gloster, D., Chiuman, W., Li, Y., and Brennan, J.D.: Entrapment of fluorescent signaling DNA enzymes in sol–gel-derived derived materials for metal ion sensing. Anal. Chem. 79, 34943503 (2005).CrossRefGoogle Scholar
Rupcich, N., Nutiu, R., Yu, L., and Brennan, J.D.: Entrapment of fluorescent signaling DNA aptamers in sol–gel-derived silica. Anal. Chem. 77, 43004307 (2007).CrossRefGoogle Scholar
Satoh, S., Fugetsu, B., Nomizu, B., and Nishi, N.: Functional DNA–silica composite prepared by sol–gel method. Polym. J. 37, 94101 (2006).CrossRefGoogle Scholar
Fujiwara, M., Shiokawa, K., Hayashi, K., Morigaki, K., and Nakahara, Y.: Direct encapsulation of BSA and DNA into silica microcapsules (hollow spheres). J. Biomed. Mater. Res. Part A 81, 103112 (2007).CrossRefGoogle ScholarPubMed
Nafisi, S., Saboury, A., Keramat, N., Neault, J-F., and Tajmir-Riahi, H.A.: Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. J. Mol. Struct. 827, 3543 (2007).CrossRefGoogle Scholar
Glaser, R.H., Wilkes, G.L., and Bronnimann, E.: Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials. J. Non-Cryst. Solids 113. 7387 (1989).CrossRefGoogle Scholar
Brunauer, S., Deming, L.S., Deming, E., and Teller, E.: On a theory of the van der waals adsorption of gases. J. Am. Chem. Soc. 62, 17231732 (1940).CrossRefGoogle Scholar
Storck, S., Bretinger, H., and Maier, W.F.: Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal., A 174, 137146 (1998).CrossRefGoogle Scholar
Groena, J.C., Peffera Louk, A.A., and Pérez-Ramı́rez, J.: Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 60, 117 (2003).CrossRefGoogle Scholar
Brinker, C.J., Keefer, K.D., Schaefer, D.W., and Ashley, C.S.: Sol-gel transition in simple silicates. J. Non-Cryst. Solids 48, 4764 (1982).CrossRefGoogle Scholar
Brinker, C.J., Keefer, D.K., Schaefer, D.W., Assink, R.A., Kay, B.D., and Ashley, C.S.: Sol-gel transition in simple silicates-II. J. Non-Cryst. Solids 63, 4549 (1984).CrossRefGoogle Scholar
Jones, W.M. and Fischbach, D.B.: Novel processing of silica hydrosols and gels. J. Non-Cryst. Solids 101, 123126 (1988).CrossRefGoogle Scholar
Brinker, C.J. and Scherer, G.W.: Sol→Gel→ glass: I. Gelation and gel structure. J. Non-Cryst. Solids 70, 301322 (1985).CrossRefGoogle Scholar
Ying, J.Y. and Benzinger, J.B.: Structural evolution of alkoxide silica gels to glass: Effect of catalyst pH. J. Am. Ceram Soc. 76, 25712582 (1993).CrossRefGoogle Scholar
Yamada, M. and Aono, H.: DNA–inorganic hybrid material as selective absorbent for harmful compounds. Polymer 49, 46584665 (2008).CrossRefGoogle Scholar
Yamada, M., Kato, K., Nomizu, M., Sakairi, N., Ohkawa, K., Yamamoto, H., and Nishi, N.: Preparation and characterization of DNA films induced by UV irradiation. Chem. Eur. J. 8, 14071412 (2002).3.0.CO;2-L>CrossRefGoogle ScholarPubMed