Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T21:35:04.751Z Has data issue: false hasContentIssue false

Native and nonnative processing of Japanese pitch accent

Published online by Cambridge University Press:  08 August 2011

XIANGHUA WU*
Affiliation:
Simon Fraser University
JUNG-YUEH TU
Affiliation:
Indiana University
YUE WANG
Affiliation:
Simon Fraser University
*
ADDRESS FOR CORRESPONDENCE Xianghua Wu, Department of Linguistics, Simon Fraser University, 9212 Robert C. Brown Hall Building, 8888 University Drive, Burnaby, BC V5A 1S6, Canada. E-mail: xianghua_wu@sfu.ca

Abstract

The theoretical framework of this study is based on the prevalent debate of whether prosodic processing is influenced by higher level linguistic-specific circuits or reflects lower level encoding of physical properties. Using the dichotic listening technique, the study investigates the hemispheric processing of Japanese pitch accent by native Japanese listeners and two groups of nonnative listeners with no prior pitch accent experience but differing in their native language experience with linguistic pitch: native listeners of Mandarin (a tone language with higher linguistic functional use of pitch) and native listeners of English (a stress language with lower functional use of pitch). The overall results reveal that, for both native and nonnative listeners, the processing of Japanese pitch accent is less lateralized (compared to lexical tone processing, which has been found to be a left hemisphere property). However, detailed analysis with individual pitch accents across groups shows a right hemisphere preference for processing the high–accent–low (H*L) pattern, a left hemisphere preference for LH*, and no hemisphere dominance for LH, indicating a significant reliance on the acoustic cues. These patterns are particularly prominent with the English listeners who are least experienced with linguistic pitch. Together, the findings suggest an interplay of linguistic and acoustic aspects in the processing of Japanese pitch accent by native and nonnative listeners.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aasland, W., & Baum, S. (2003). Temporal parameters as cues to phrasal boundaries: A comparison of processing by left-hemisphere-damaged and right-hemisphere-damaged individuals. Brain and Language, 87, 385399.CrossRefGoogle Scholar
Amano, S., & Kondo, T. (1999). Nihongo-no goitokusei [Lexical properties of Japanese]. Tokyo: Sanseido.Google Scholar
Arciuli, J., & Slowiaczek, L. M. (2007). The where and when of linguistic word-level prosody. Neuropsychologia, 45, 26382642.CrossRefGoogle ScholarPubMed
Baum, S. (2002). Word recognition in individuals with left and right hemisphere damage: The role of lexical stress. Applied Psycholinguistics, 23, 233246.CrossRefGoogle Scholar
Baum, S., & Pell, M. (1999). The neural bases of speech prosody: Insights from lesion studies and neuroimaging. Aphasiology, 13, 581608.CrossRefGoogle Scholar
Berker, F., & Reinvang, I. (2007). Mismatch negativity elicited by tones and speech sounds: Changed topographical distribution in aphasia. Brain and Language, 100, 6978.CrossRefGoogle Scholar
Bever, T. G. (1975). Cerebral asymmetries in humans are due to the differentiation of two incompatible processes: Holistic and analytic. Annals of the New York Academy of Sciences, 163, 251262.CrossRefGoogle Scholar
Bryden, M. P., & Murray, J. E. (1985). Toward a model of dichotic listening performance. Brain and Cognition, 4, 241257.CrossRefGoogle Scholar
Chao, Y. R. (1948). Mandarin primer: An intensive course in spoken Chinese. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Chernigovskaya, T. V., Svetozarova, N. D., Tokareva, T. I., Tret'yakov, D. A., Ozerskii, P. V., & Strel'nikov, K. N. (2000). Specialization of cerebral hemispheres in the perception of Russian intonations. Human Physiology, 26, 142147 (Translated from Fiziologiya Cheloveka, 26, 24–29).CrossRefGoogle Scholar
Cruttenden, A. (1997). Intonation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cutler, A. (1986). Forbear is a homophone: Lexical prosody does not constrain lexical access. Language and Speech, 29, 201220.CrossRefGoogle Scholar
Cutler, A., & Clifton, C. (1999). Comprehending spoken language: A blueprint of the listener. In Brown, C. & Hagoort, P. (Eds.), The neurocognition of language. New York: Oxford University Press.Google Scholar
Dwyer, J., Blumstein, S. E., & Ryalls, J. (1982). The role of duration and rapid temporal processing on the lateral perception of consonants and vowels. Brain and Language, 17, 272286.CrossRefGoogle ScholarPubMed
Gandour, J., Wong, D., Dzemidzic, M, Lowe, M., Tong, Y., & Li, X. (2003). A cross-linguistic fMRI study of perception of intonation and emotion in Chinese. Human Brain Mapping, 18, 149157.CrossRefGoogle ScholarPubMed
Gandour, J., Dzemidzic, M., Wong, D., Lowe, M., Tong, Y., Hsieh, L, et al. (2003). Temporal integration of speech prosody is shaped by language experience: An fMRI study. Brain and Language, 84, 318336.CrossRefGoogle ScholarPubMed
Gandour, J., Tong, Y., Wong, D., Talavage, T., Dzemidzic, M., Xu, Y, et al. (2004). Hemispheric roles in the perception of speech prosody. NeuroImage, 23, 344357.CrossRefGoogle ScholarPubMed
Gandour, J., Wong, D., Lowe, M., Dzemidzic, M., Satthamnuwing, N., Tong, Y., et al. (2002). A cross-linguistic fMRI study of spectral and temporal cues underlying phonological processing. Journal of Cognitive Neuroscience, 14, 10761087.CrossRefGoogle ScholarPubMed
Gazzaniga, M. S. (Ed.). (1984). Handbook of cognitive neuroscience. New York: Plenum Press.CrossRefGoogle Scholar
Grimshaw, G., Kwasny, K. M., Covell, E., & Johnson, R. A. (2003). The dynamic nature of language lateralization: Effects of lexical and prosodic factors. Neuropsychologia, 41, 10081019.CrossRefGoogle ScholarPubMed
Hallé, P. A., Chang, Y. C., & Best, C. T. (2004). Identification and discrimination of Mandarin Chinese tones by Mandarin Chinese vs. French listeners. Journal of Phonetics, 32, 395421.CrossRefGoogle Scholar
Hayashi, R., Imaizumi, S., Mori, K., Niimi, S., Ueno, S., & Kiritani, S. (2001). Elicitation of N400m in sentence comprehension due to lexical prosody incongruity. NeuroReport, 12, 17531756.CrossRefGoogle ScholarPubMed
Ivry, R., & Lebby, P. (1993). Hemispheric differences in auditory perception are similar to those found in visual perception. Psychological Science, 4, 4145.CrossRefGoogle Scholar
Kaan, E., Wayland, R., Bao, M., & Barkley, C. M. (2007). Effects of native language and training on lexical tone perception: An event-related potential study. Brain Research, 1148, 113122.CrossRefGoogle ScholarPubMed
Kimura, D. (1961). Cerebral dominance and the perception of verbal stimuli. Canadian Journal of Psychology, 15, 166171.CrossRefGoogle Scholar
Kimura, D. (1967). Functional asymmetry of the brain in dichotic listening. Cortex, 3, 163178.CrossRefGoogle Scholar
King, R. (1967). Functional load and sound change. Language, 43, 831852.CrossRefGoogle Scholar
Kitahara, M. (2001). Category structure and function of pitch accent in Tokyo Japanese. PhD dissertation, Indiana University.Google Scholar
Klein, D., Zatorre, R. J., Milner, B., & Zhao, V. (2001). A cross-linguistic PET study of tone perception in Mandarin Chinese and English speakers. NeuroImage, 13, 646653.CrossRefGoogle ScholarPubMed
Lehiste, I. (1970). Suprasegmentals. Cambridge, MA: MIT Press.Google Scholar
Maniwa, K. (2002). Acoustic and perceptual evidence of complete neutralization of word-final tonal specification in Japanese. Kansas Working Papers in Linguistics, 26, 93112.Google Scholar
Millay, K., Roeser, R. J., & Godfrey, J. J. (1977). Reliability of performance for dichotic listening using two response modes. Journal of Speech and Hearing Research, 20, 510518.CrossRefGoogle ScholarPubMed
Mitchell, R. L. C., & Crow, T. J. (2005). Right hemisphere language functions and schizophrenia: The forgotten hemisphere? Brain, 128, 963978.CrossRefGoogle ScholarPubMed
Moen, I. (1993). Functional lateralization of the perception of Norwegian word tones—Evidence from a dichotic listening experiment. Brain and Language, 44, 400413.CrossRefGoogle ScholarPubMed
Moen, I., & Sundet, K. (1996). Production and perception of word tones (pitch accents) in patients with left and right hemisphere damage. Brain and Language, 53, 267281.CrossRefGoogle ScholarPubMed
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97113.CrossRefGoogle ScholarPubMed
Pierrehumbert, J., & Beckman, M. (1988). Japanese tone structure. Linguistic inquiry monograph 15. Cambridge: MIT Press.Google Scholar
Pihan, H., Tabert, M., Assuras, S., & Borod, J. (2008). Unattended emotional intonations modulate linguistic prosody processing. Brain and Language, 105, 141147.CrossRefGoogle ScholarPubMed
Poeppel, D. (2001). Pure word deafness and the bilateral processing of the speech code. Cognitive Science, 25, 679693.CrossRefGoogle Scholar
Poeppel, D. (2003). The analysis of speech in different temporal integration windows: Cerebral lateralization as “asymmetric sampling in time.” Speech Communication, 41, 245255.CrossRefGoogle Scholar
Sadock, J. M., & Zwicky, A. M. (1985). Speech acts distinctions in syntax. In Shopen, T. (Ed.), Language typology and syntactic description. Cambridge: Cambridge University Press.Google Scholar
Sato, Y., Sogabe, Y., & Mazuka, R. (2007). Brain responses in the processing of lexical pitch-accent by Japanese speakers. NeuroReport, 18, 20012004.CrossRefGoogle ScholarPubMed
Sekiguchi, T. (2006). Effects of lexical prosody and word familiarity on lexical access of spoken Japanese words. Journal of Psycholinguistic Research, 35, 369384.CrossRefGoogle ScholarPubMed
Shah, A. P., & Baum, S. R. (2006). Perception of lexical stress by brain-damaged individuals: Effects on lexical–semantic activation. Applied Psycholinguistics, 27, 143156.CrossRefGoogle Scholar
Shipley-Brown, F., Dingwall, W. O., Berlin, C. I., Yeni-Komshian, G., & Gordon-Salant, S. (1988). Hemispheric processing of affective and linguistic intonation contours in normal subjects. Brain and Language, 33, 1626.CrossRefGoogle ScholarPubMed
Sugito, M. (1983). Nihongo no akusento to intoneeshon—Tokyo hogen no “hana” to “hana” no soui [Japanese accent and intonation—The difference between “hana ‘flower’” and “hana ‘nose’” in the Tokyo dialect]. In Sugito, M. (Ed.), “hana” to “hana” Nihongo no kenkyu 5. Osaka: Izumishoin. [Reprinted from Kotoba to onsei, “kotoba” Series 18]Google Scholar
Sugiyama, Y. (2006). Japanese pitch accent: Examination of final-accented and unaccented minimal pairs. Toronto Working Papers in Linguistics, 26, 7388.Google Scholar
Surendran, D., & Niyogi, P. (2006). Quantifying the functional load of phonemic oppositions, distinctive features, and suprasegmentals. In Thomsen, O. Nedergaard (Ed.), Competing models of language change: Evolution and beyond. Amsterdam: John Benjamins.Google Scholar
Van Lancker, D. (1980). Cerebral lateralization of pitch cues in the linguistic signal. Papers in Linguistics, 13, 201277.CrossRefGoogle Scholar
Van Lancker, D., & Fromkin, V. (1973). Hemispheric specialization for pitch and tone: Evidence from Thai. Journal of Phonetics, 1, 101109.CrossRefGoogle Scholar
Vance, T. J. (1995). Final accent vs. no accent: Utterance-final neutralization in Tokyo Japanese. Journal of Phonetics, 23, 487499.CrossRefGoogle Scholar
Walsh, D. L. (1996). Limiting-domains in lexical access: Processing of lexical prosody. In Dickey, M. & Tunstall, S. (Eds.), University of Massachusetts occasional papers in linguistics 19: Linguistics in the laboratory. Amherst: GLSA.Google Scholar
Wang, Y., Behne, D., Jongman, A., & Sereno, J. A. (2004). The role of linguistic experience in the hemispheric processing of lexical tone. Applied Psycholinguistics, 25, 449466.CrossRefGoogle Scholar
Wang, Y., Sereno, J. A., & Jongman, A. (2001). Dichotic perception of Mandarin tones by Chinese and American listeners. Brain and Language, 78, 332348.CrossRefGoogle ScholarPubMed
Wang, Y., Sereno, J. A., Jongman, A., & Hirsch, J. (2003). fMRI evidence for cortical modification during learning of Mandarin lexical tone. Journal of Cognitive Neuroscience, 15, 19.CrossRefGoogle ScholarPubMed
Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10, 420422.CrossRefGoogle ScholarPubMed
Zatorre, R. J., & Gandour, J. T. (2008). Neural specializations for speech and pitch: Moving beyond the dichotomies. Philosophical Transactions of the Royal Society, 363, 10871104.CrossRefGoogle ScholarPubMed
Zatorre, R. J., & Samson, S. (1991). Role of the right temporal neocortex in retention of pitch in auditory short-term memory. Brain, 114, 24032417.CrossRefGoogle ScholarPubMed
Zhang, L., Shu, H., Zhou, F., Wang, X., & Li, P. (2010). Common and distinct neural substrates for the perception of speech rhythm and intonation. Human Brain Mapping, 7, 11061116.CrossRefGoogle Scholar
Zhao, J., Shu, H., Zhang, L., Wang, X., Gong, Q., & Li, P. (2008). Cortical competition during language discrimination. NeuroImage, 43, 624633.CrossRefGoogle ScholarPubMed