Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T14:18:01.631Z Has data issue: false hasContentIssue false

Hydrophilic Co–Pt Alloy Nanoparticles: Synthesis, Characterization, and Perspectives

Published online by Cambridge University Press:  03 March 2011

Athanasios B. Bourlinos
Affiliation:
Institute of Materials Science, NCSR “Demokritos,” Athens 15310, Greece
Ioannis Panagiotopoulos
Affiliation:
Institute of Materials Science, NCSR “Demokritos,” Athens 15310, Greece
Dimitrios Niarchos
Affiliation:
Institute of Materials Science, NCSR “Demokritos,” Athens 15310, Greece
Dimitrios Petridis*
Affiliation:
Institute of Materials Science, NCSR “Demokritos,” Athens 15310, Greece
*
a)Address all correspondence to this author. e-mail: dpetrid@ims.demokritos.gr
Get access

Abstract

Hydrophilic Co–Pt alloy nanoparticles nearing the equiatomic ratio and dispersedin water-soluble sodium carboxymethyl cellulose were synthesized by the aqueous reduction of CoCl2⋅6H2O and [Pt(NH3)4]Cl2⋅H2O with NaBH4 in presence of the cellulosic derivative. The as-received Co–Pt nanoparticles in the cellulosic matrix possess a disordered fcc structure that, upon calcination under an Ar atmosphereand carbonization of the cellulosic mantle of the particles, transformed to an ordered fcc phase. Both as-synthesized and calcined samples are magnetically soft at room temperature and exhibit a strong magnetic response when a magnetic field is applied. On account of the chemical composition of the carboxymethyl cellulose, the coated Co–Pt nanoparticles are easily soluble in water in high concentrations and exhibit interesting ion-exchange properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chen, C., Kitakami, O., Okamoto, S., Shimada, Y., Shibata, K. and Tanaka, M.: IEEE Trans. Magn. 35, 3466 (1999).CrossRefGoogle Scholar
2Yu, M., Liu, Y., Moser, A., Weller, D. and Sellmyer, D.J.: Appl. Phys. Lett. 75, 3992 (1999).CrossRefGoogle Scholar
3Sui, Y., Yue, L., Skomski, R., Li, X.Z., Zhou, J. and Sellmyer, D.J.: J. Appl. Phys. 93, 7571 (2003).CrossRefGoogle Scholar
4Karanasos, V., Panagiotopoulos, I., Niarchos, D., Okumura, H. and Hadjipanayis, G.C.: J. Appl. Phys. 90, 3112 (2001).CrossRefGoogle Scholar
5Karanasos, V., Panagiotopoulos, I., Niarchos, D., Okumura, H. and Hadjipanayis, G.C.: Appl. Phys. Lett. 79, 1255 (2001).CrossRefGoogle Scholar
6Schlesinger, H.I., Brown, H.C., Finholt, A.E., Galbreath, J.R., Hochstra, H.R. and Hyde, E.K.: J. Am. Chem. Soc. 75, 215 (1953).CrossRefGoogle Scholar
7Klabunde, K.J., Stark, J.V., Koper, O., Mohs, C., Khaleel, A., Glavee, G., Zhang, D., Sorensen, C.M. and Hadjipanayis, G.C. in Nanophase Materials-Synthesis-Properties-Applications , edited by Hadjipanayis, G.C. and Siegel, R.W., (NATO ASI Series, Ser. E: Applied Sciences, 260, Kluwer Academic Publishers, 1994), p. 1Google Scholar
8 L. Yiping, Z.X. Tang, G.C. Hadjipanayis, C.M. Sorensen, and K.J. Klabunde: IEEE Trans. Magn. 2646 (1993).CrossRefGoogle Scholar
9Carpenter, E.E., Seip, C.T. and O’Connor, C.J.: J. Appl. Phys. 85, 5184 (1999).CrossRefGoogle Scholar
10Warne, B., Kasyutich, O.I., Mayes, E.L., Wiggins, J.A.L. and Wong, K.K.W.: IEEE Trans. Magn. 36, 3009 (2000).CrossRefGoogle Scholar
11Fang, J., Tung, L.D., Stokes, K.L., He, J., Caruntu, D., Zhou, W.L. and O’Connor, C.J.: J. Appl. Phys. 91, 8816 (2002).CrossRefGoogle Scholar
12Frommen, C., Rösner, H. and Fenske, D.: J. Nanosci. Nanotech. 2, 509 (2002).CrossRefGoogle Scholar
13Austin, G.T.: Shreve’s Chemical Process Industries , 5th ed. (McGraw-Hill, New York, 1984), p. 612Google Scholar
14 Handbook of Preparative Inorganic Chemistry , 2nd ed., edited by Brauer, G. (Academic Press, New York, 1963), p. 1577Google Scholar
15Cotton, F.A. and Wilkinson, G.: Advanced Inorganic Chemistry , 5th ed. (Wiley Interscience, New York, 1988), p. 168Google Scholar
16Kotz, J.C. and Purcell, K.F.: Chemistry and Chemical Reactivity , 2nd ed. (Saunders College Publishing, New York, 1991), p. 1139Google Scholar
17Sun, S., Murray, C.B., Weller, D., Folks, L. and Moser, A.: Science. 287, 1989 (2000).CrossRefGoogle Scholar
18Gangopadhyay, S., Hadjipanayis, G.C., Dale, B., Sorensen, C.M., Klabunde, K.J., Papaefthymiou, V. and Kostikas, A.: Phys. Rev. B. 45, 9778 (1992).CrossRefGoogle Scholar
19Kaiser, R. and Miskolczy, G.: J. Appl. Phys. 41, 1064 (1970).CrossRefGoogle Scholar
20Bourlinos, A.B., Simopoulos, A. and Petridis, D.: Chem. Mater. 14, 899 (2002).CrossRefGoogle Scholar
21Bourlinos, A.B., Bakandritsos, A., Georgakilas, V. and Petridis, D.: Chem. Mater. 14, 3226 (2002).CrossRefGoogle Scholar
22Polysaccharide Applications, Cosmetic and Pharmaceuticals, edited by El-Nokaly, M.A. and Soini, H.A. (ACS Symposium Series, New York, 737, 1999).Google Scholar
23 A.B. Bourlinos and D. Petridis: Chem. Commun. 2788 (2002).CrossRefGoogle Scholar
24Dautzenberg, H., Schuldt, U., Grasnick, G., Karle, P., Müller, P., Löhr, M., Pelegrin, M., Piechaczyk, M., Rombs, K.V., Günzburg, W.H., Salmons, B. and Saller, R.M.: Ann. N. Y. Acad. Sci. 875, 46 (1999).CrossRefGoogle Scholar
25Awaga, K.: Molecular-Based Magnetic Materials: Theory, Techniques, and Applications, edited by Turnbull, M.M., Sugimoto, T., and Thompson, L.K. (ACS Symposium Series, New York, 644, 1996), p. 236.Google Scholar
26Bochmann, M.: Organometallics 2: Complexes with Transition Metal-Carbon π-Bonds , Oxford Chemistry Primers Series (Oxford University Press, Oxford, U.K. 1994), p. 51.Google Scholar