Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T05:35:00.565Z Has data issue: false hasContentIssue false

Modeling Self-Assembly of Nanoparticle Structures: Simulation of Nanoparticle Chemical Potentials in Polymer-Nanoparticle Mixtures

Published online by Cambridge University Press:  11 February 2011

Krishna T. Marla
Affiliation:
School of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0100, U.S.A.
James C. Meredith
Affiliation:
School of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0100, U.S.A.
Get access

Abstract

The expanded ensemble Monte Carlo (EEMC) simulation method has been applied to calculation of the chemical potential of nanocolloidal particles in the presence of polymeric surface modifiers. Two general classes of surface modifiers have been studied – nonadsorbing and freely-adsorbing. For both systems, the infinite dilution colloid chemical potential was calculated as a function of the colloid diameter and the modifier chain length. The colloid chemical potential was found to decrease with increasing modifier chain length for both types of modifiers, albeit for different reasons. Empirical power-law scaling relationships were found to represent the simulation results well. A physical interpretation was proposed for the power law exponents obtained in the case of adsorbing modifiers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mayer, A. B. R., Mark, J. E., Polymer 41, 16271631 (2000).Google Scholar
2. Thomas, P. J., Kulkarni, G. U., Rao, C. N. R., J. Phys. Chem. B. 104, 81388144 (2000).Google Scholar
3. Murray, C. B., Kagan, C. R., Bawendi, M. G., Science 270, 13351338 (1995).Google Scholar
4. Lu, Y., Tang, Y., Sellinger, A., Lu, M., Huang, J., Fan, H., Haddad, R., Lopez, G., Burns, A., Sasaki, D. Y., Shelnutt, J., Brinker, C. J., Nature 410 (2001).Google Scholar
5. Sellinger, A., Weiss, P. M., Nguyen, A., Lu, Y., Assink, R. A., Gong, W., Brinker, C. J., Nature 394, 256260 (1998).Google Scholar
6. Widom, B., J. Chem. Phys 39, 28082812 (1963).Google Scholar
7. Lyubartsev, A. P., Martsinovski, A. A., Shevkunov, S. V., Vorontsov-Velyaminov, P. N., J. Chem. Phys 96, 17761783 (1992).Google Scholar
8. Wilding, N. B., Muller, M., J. Chem. Phys 101, 4324 (1994).Google Scholar
9. Escobedo, F., de Pablo, J. J., J. Chem. Phys. 103, 27032710 (1995).Google Scholar
10. de Pablo, J. J., Laso, M., Suter, U. W., J. Chem. Phys. 96, 23952403 (1992).Google Scholar
11. Kumar, K. S., Szleifer, I., Panagiotopoulos, A. Z., Phys. Rev. Lett. 66, 29352938 (1991).Google Scholar
12. Siepmann, J. I., Mol. Phys. 70, 11451158 (1990).Google Scholar
13. Mooij, G. C. A. M., Frenkel, D., Mol. Phys. 74, 4147 (1991).Google Scholar
14. Escobedo, F., de Pablo, J. J., Mol. Phys. 89, 17331754 (1996).Google Scholar
15. Marla, K. T., Meredith, J. C., J. Chem. Phys 117, 54435451 (2002).Google Scholar
16. Meijer, E. J., Frenkel, D., J. Chem. Phys 100, 6873 (1994).Google Scholar
17. Meijer, E. J., Frenkel, D., Physica A 213, 130137 (1995).Google Scholar
18. Fuchs, M., Schweizer, K. S., J. Phys.: Condens. Matter 14, R239–R269 (2002).Google Scholar
19. Fuchs, M., Schweizer, K. S., Phys. Rev. E 64, 021514 (2001).Google Scholar
20. Eisenriegler, E., Hanke, A., Dietrich, S., Phys. Rev. E 54, 1134 - 1152 (1996).Google Scholar
21. Handbook of Surface and Colloid Chemistry. Birdi, K. S., Ed. (CRC Press, ed. 1st., 1997). pp. 373 Google Scholar