Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T13:10:07.391Z Has data issue: false hasContentIssue false

Dielectrophoretic Deposition of Carbon Nanotubes with Controllable Density and Alignment

Published online by Cambridge University Press:  01 February 2011

Jason Moscatello
Affiliation:
Michigan Technological University, Dept. of Physics, 118 Fisher Hall, 1400 Townsend Dr., Houghton, MI, 49931, United States, 906-487-2900, 906-487-2933
Vijaya Kayastha
Affiliation:
vkkayast@mtu.edu, Michigan Technological University, Department of Physics, 118 Fisher Hall, 1400 Townsend Dr., Houghton, MI, 49931, United States
Archana Pandey
Affiliation:
arpandey@mtu.edu, Michigan Technological University, Department of Physics, 118 Fisher Hall, 1400 Townsend Dr., Houghton, MI, 49931, United States
Benjamin Ulmen
Affiliation:
baulmen@mtu.edu, Michigan Technological University, Department of Physics, 118 Fisher Hall, 1400 Townsend Dr., Houghton, MI, 49931, United States
Yoke Khin Yap
Affiliation:
ykyap@mtu.edu, Michigan Technological University, Department of Physics, 118 Fisher Hall, 1400 Townsend Dr., Houghton, MI, 49931, United States
Get access

Abstract

Controlled deposition of carbon nanotubes (CNTs) across desired electrodes is important for the fabrication of nanoelectronic devices. Dieletrophoresis (DEP) has been recognized as a convenient and affordable technique for the deposition of nanotubes and nanowires on electrodes. Although DEP has been quite well studied for dielectric particles, the application for depositing nanotubes is still at the early stage of development. Here, we show that multi-walled CNTs can be deposited by DEP with controllable density and degree of alignment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, H., Zhang, Q. and Li, J., Appl. Phys. Lett. 88, 013508 (2006).Google Scholar
2. Javey, A., Guo, J., Farmer, D.B., Wang, Q., Gordon, R.G., Lundstrom, M. and Dai, H., Nanolett. 4, 447 (2004).Google Scholar
3. Martel, R., Schmidt, T., Shea, H.R., Hertel, T. and Avourisa, P., Appl. Phys. Lett. 73, 17 (1998).Google Scholar
4. Wind, S.J., Appenzeller, J., Martel, R., Derycke, V. and Avouris, Ph., Appl. Phys. Lett. 80, 3817 (2002).Google Scholar
5. Tans, S., Verschueren, A. and Dekker, C., Nature (London) 393, 49 (1998).Google Scholar
6. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Chou, K., Dai, H., Science 287, 622 (2000).Google Scholar
7. Collins, P.G., Bradley, K., Ishigami, M., Zettl, A., Science 287, 1801 (2000).Google Scholar
8. Dai, H., Hafner, J.H., Rinzler, A.G., Coilbert, D.T., Smalley, R.E., Nature 384, 147 (1996).Google Scholar
9. Snow, E.S., Campbell, P.M. and Novak, J.P., Appl. Phys. Lett. 80, 2002 (2002).Google Scholar
10. Hafner, J.H., Cheung, C.L. and Lieber, C.M., Nature 398, 761 (1999).Google Scholar
11. Ulmen, B., Kayastha, V.K., DeConinck, A., Wang, J. and Yap, Y.K., Diamond & Related Materials 15, 212 (2006).Google Scholar
12. Kayastha, V. K., Ulmen, B. and Yap, Y. K., Nanotechnology 18, 035206 (2007).Google Scholar
13. Bachtold, A., Hadley, P., Nakanishi, T. and Dekker, C., Science 294, 1317 (2001).Google Scholar
14. Javey, A., Shim, M. and Dai, H., Appl. Phys. Lett. 80, 1064 (2002).Google Scholar
15. Liu, X., Lee, C., Zhou, C. and Han, J., Appl. Phys. Lett. 79, 3329 (2001).Google Scholar
16. Menda, J., Ulmen, B., Vanga, L.K., Kayastha, V.K., Yap, Y.K., Pan, Z., Ivanov, I.N., Puretzky, A.A. and Geohegan, D.B., Appl. Phys. Lett. 87, 173106 (2005).Google Scholar
17. Kayastha, V.K., Yap, Y.K., Pan, Z., Ivanov, I.N., Puretzky, A.A. and Geohegan, D.B., Appl. Phys. Lett. 86, 253105 (2005).Google Scholar
18. Kayastha, V., Yap, Y. K., Dimovski, S., and Gogotsi, Y., Appl. Phys. Lett. 85, 3565 (2004).Google Scholar
19. Seo, H.-W., Han, C.-S., Choi, D.-G., Kim, K.-S. and Lee, Y.-H., Microelectronic Engineering, 81, 83 (2005).Google Scholar
20. Chen, X. Q., Saito, T., Yamada, H. and Matsushige, K., Appl. Phys. Lett. 78, 3714 (2001).Google Scholar