Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T13:30:36.384Z Has data issue: false hasContentIssue false

Growth of Single Crystalline ZnO Nanotubes and Nanosquids

Published online by Cambridge University Press:  01 February 2011

Abhishek Prasad
Affiliation:
Michigan Technological University, Dept. of Physics, 118 Fisher Hall, 1400 Townsend Dr., Houghton, MI, 49931, United States, 906-487-2900, 906-487-2933
Samuel Mensah
Affiliation:
smensah@uark.edu, Michigan Technological University, Department of Physics, 118 Fisher Hall, 1400 Townsend Drive, Houghton, MI, 49931, United States
Jiesheng Wang
Affiliation:
jiewang@mtu.edu, Michigan Technological University, Department of Physics, 118 Fisher Hall, 1400 Townsend Drive, Houghton, MI, 49931, United States
Archana Pandey
Affiliation:
arpandey@mtu.edu, Michigan Technological University, Department of Physics, 118 Fisher Hall, 1400 Townsend Drive, Houghton, MI, 49931, United States
Yoke Khin Yap
Affiliation:
ykyap@mtu.edu, Michigan Technological University, Department of Physics, 118 Fisher Hall, 1400 Townsend Drive, Houghton, MI, 49931, United States
Get access

Abstract

The growth of ZnO nanotubes and nanosquids is obtained by conventional thermal chemical vapor deposition (CVD) without the use of catalysts or templates. Characterization of these ZnO nanostructures was conducted by X-ray powder diffraction (XRD), Field-emission scanning electron microscopy (FESEM), Raman spectroscopy, and photoluminescence (PL). Results indicate that these ZnO nanostructures maintain the crystalline structures of the bulk wurtzite ZnO crystals. Our results show that rapid cooling can be used to induce the formation of ZnO nanotubes and ZnO nanosquids. The self-assembly of these novel ZnO nanostructures are guided by the theory of nucleation and the vapor-solid crystal growth mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, Y., Meng, G. W., Zhang, L. D., and Phillipp, F., Appl. Phys. Lett. 76, 2011 (2000).Google Scholar
2. Huang, M. H., Mao, S., Feick, H., Y an, H. Q., W u, Y. Y., Kind, H., Weber, E., Russo, R., and Yang, P. D., Science 292, 1897 (2001).Google Scholar
3. P an, Z. W., Dai, Z. R., and W ang, Z. L., Science 291, 1947 (2001).Google Scholar
4. Y an, H. Q., He, R. R., Johnson, J., Law, M., Saykally, R. J., and Yang, P. D., J. Am. Chem. Soc. 125, 4728 (2003).Google Scholar
5. Lao, J. Y., Huang, J. Y., Wang, D. Z., and Ren, Z. F., Nano Lett. 3, 235 (2003).Google Scholar
6. Wang, X., Song, J., and Wang, Z. L., Chem. Phys. Lett. 424, 86 (2006).Google Scholar
7. Arnold, M., Avouris, P., P an, Z. W., and Wang, Z. L., J. Phys. Chem. B 107, 659 (2003).Google Scholar
8. Ng, H. T., Han, J., Yamada, T., Nguyen, P., Chen, Y. P., and Meyyappan, M., Nano Lett. 4, 1247 (2004).Google Scholar
9. Bai, X. D., Gao, P. X., Wang, Z. L., and Wang, E. G., Appl. Phys. Lett. 82, 4806 (2003).Google Scholar
10. Wang, Z. L. and Song, J. H., Science 312, 242 (2006).Google Scholar
11. Mensah, S. L., Kayastha, V. K., Ivanov, I. N., Geohegan, D. B., and Yap, Y. K., Appl. Phys. Lett. 90, 113108 (2007).Google Scholar
12. Tarjan, I. and Matrai, M. (eds.), Laboratory Manual on Crystal Growth, Akadámiai Kiadó, Budapest (1972), pp.2930.Google Scholar
13. Blakely, J. M. and Jackson, K. A., J. Chem. Phys. 37, 428 (1962).Google Scholar
14. Syono, Y., Akimoto, S., and Matsui, Y., J. Solid State Chem. 3, 369 (1971).Google Scholar