Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T06:13:31.063Z Has data issue: false hasContentIssue false

Photoelectrochemical Properties of Highly-ordered Titania Nanotube-arrays

Published online by Cambridge University Press:  01 February 2011

Maggie Paulose
Affiliation:
Department of Electrical Engineering, Department of Materials Science and Engineering, and The Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 USA.
Oomman K. Varghese
Affiliation:
Department of Electrical Engineering, Department of Materials Science and Engineering, and The Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 USA.
Karthik Shankar
Affiliation:
Department of Electrical Engineering, Department of Materials Science and Engineering, and The Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 USA.
Gopal K. Mor
Affiliation:
Department of Electrical Engineering, Department of Materials Science and Engineering, and The Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 USA.
Craig A. Grimes
Affiliation:
Department of Electrical Engineering, Department of Materials Science and Engineering, and The Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 USA.
Get access

Abstract

We report on non-particulate titania photoelectrodes with a unique highly-ordered nanotube-array architecture prepared by an anodization process that enables precise control over array dimensions. Under 320–400 nm illumination titania nanotube-array photoanodes, pore size 110 nm, wall thickness 20 nm, and 6 μm length, generate hydrogen by water photoelectrolysis at a normalized rate of 80 mL/W•hr, to date the most efficient titania-based photoelectrochemical device, with a conversion efficiency of 12.25%. The highly-ordered nanotubular architecture allows for superior charge separation and charge transport, with a calculated quantum efficiency of nearly 100% for incident photons with energies larger than the titania bandgap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aroutiounian, V. M., Arakelyan, V. M., Shahnazaryan, G. E., Solar Energy, and References therein, in press (2004)Google Scholar
2. Gratzel, M., Journal of Photochemistry and Photobiology C-Photochemistry Reviews 4, 145153 (2003).Google Scholar
3. Gratzel, M., Nature 414, 338344 (2001).Google Scholar
4. Gratzel, M., Journal of Photochemistry and Photobiology a-Chemistry 164, 314 (2004).Google Scholar
5. Nazeeruddin, M. K. et al., Journal of the American Chemical Society 123, 16131624 (2001).Google Scholar
6. Cao, F., Oskam, G., Meyer, G. J., Searson, P. C., Journal of Physical Chemistry 100, 1702117027 (1996).Google Scholar
7. deJongh, P. E., Vanmaekelbergh, D., Physical Review Letters 77, 34273430 (1996).Google Scholar
8. Zhang, X. et al., Journal of the Electrochemical Society 148, G398–G400 (2001).Google Scholar
9. Limmer, S. J., Chou, T. P., Cao, G. Z., Journal of Materials Science 39, 895901 (2004).Google Scholar
10. Yoo, S., Akbar, S. A., Sandhage, K. H., Adv. Mater. 16, 260 (2004).Google Scholar
11. Adachi, M., Murata, Y., Okada, I., Yoshikawa, S., Journal of the Electrochemical Society, 150, G488–G493 (2000).Google Scholar
12. Zhu, Y. C., Li, H. L., Koltypin, Y., Hacohen, Y. R., Gedanken, A., Chemical Communications, 24, 26162617 (2001).Google Scholar
13. Peng, T. Y., Hasegawa, A., Qiu, J. R., Hirao, K., Chemistry of Materials 15, 20112016 (2003).Google Scholar
14. Butterfield, I. M. et al., Journal of Applied Electrochemistry 27, 385395 (1997).Google Scholar
15. Varghese, O. K., Gong, D. W., Paulose, M., Grimes, C. A., Dickey, E. C., Journal of Materials Research 18, 156165 (2003).Google Scholar
16. Mor, G. K., Varghese, O. K., Paulose, M., Mukherjee, N., Grimes, C. A., Journal of Materials Research 18, 25882593 (2003).Google Scholar
17. Varghese, O.K., Mor, G. K., Grimes, C. A., Paulose, M., Mukherjee, N., J. Nanoscience Nanotechnology 4, 733 (2004)Google Scholar
18. We note the hydrogen sensitivity of the material is the largest known sensitivity of any material, to any gas, at any temperature; at 23°C in response to 1000 ppm hydrogen the nanotubes demonstrate a 1, 000, 000, 000% change in electrical resistivity.Google Scholar
19. Mor, G. K., Carvalho, M. A., Varghese, O. K., Pishko, M. V., Grimes, C. A., Journal of Materials Research 19, 628634 (2004).Google Scholar
20. Vanmaekelbergh, D., de Jongh, P. E., Journal of Physical Chemistry B 103, 747750 (1999).Google Scholar
21. Hamnett, A., Faraday Discussions of the Chemical Society 70, 127 (1980).Google Scholar
22. Kumar, K.–N. P., Keizer, K., Burggraaf, A. J., Okubo, T. and Nagamoto, H., J. Mater. Chem. 3, 1151 (1993).Google Scholar
23. Gouma, P.I. and Mills, M.J., J. Am. Ceram. Soc. 84, 619 (2001).Google Scholar
24. Hagfeldt, A. and Gratzel, M., Chemical Reviews 95, 49 (1995).Google Scholar