Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T13:38:43.825Z Has data issue: false hasContentIssue false

Origin and magnitude of the large piezoelectric response in the lead-free (1–x)BiFeO3xBaTiO3 solid solution

Published online by Cambridge University Press:  01 January 2011

Serhiy O. Leontsev*
Affiliation:
Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
Richard E. Eitel
Affiliation:
Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506
*
a)Address all correspondence to this author. e-mail: leontsev@uky.edu
Get access

Abstract

Mechanisms and magnitudes of the large piezoelectric response observed in lead-free (1–x)BiFeO3xBaTiO3 (BFBT) ceramics are investigated. Preceding studies reported significant strain hysteresis and hard ferroelectric behavior in BFBT leading to a small low-field piezoelectric coefficient, instability of the poled domain state, and rapid degradation of piezoelectric properties. The current investigation shows that under application of a suitable direct current (dc) bias to stabilize the ferroelectric phase low- and high-field piezoelectric coefficients (d33) of 150 pC/N and 250 pC/N are observed for the composition 0.67BiFeO3–0.33BaTiO3 + 0.1 wt% MnO with a Curie temperature of 605 °C. Such enhancement of electromechanical properties under dc bias is in contrast to the expected behavior in traditional piezoelectric materials such as soft lead zirconate titanate (PZT). The large piezoelectric coefficients confirm strong intrinsic and extrinsic contributions to the piezoelectric response in BFBT, which coupled with high ferroelectric Curie temperature TC > 500 °C, suggests BFBT-based materials as promising lead-free alternatives to PZT piezoceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gray, R.B.: Transducer and method of making the same, in United States Patent Office (Erie Resistor Corporation, Erie, PA, 1949).Google Scholar
2.Roberts, S.: Dielectric and piezoelectric properties of barium titanate. Phys. Rev. 71, 890 (1947).CrossRefGoogle Scholar
3.Catalan, G. and Scott, J.F.: Physics and application of bismuth ferrite. Adv. Mater. 21, 2463 (2009).CrossRefGoogle Scholar
4.Jona, F. and Shirane, G.: Ferroelectric Crystals (Dover Publications Inc., New York, 1993).Google Scholar
5.Jaffe, H.: Piezoelectric ceramics. J. Am. Ceram. Soc. 41, 494 (1958).CrossRefGoogle Scholar
6.Wada, S., Takeda, K., Muraishi, T., Kakemoto, H., Tsurumi, T., and Kimura, T.: Domain wall engineering in lead-free piezoelectric grain-oriented ceramics. Ferroelectrics 373, 11 (2008).CrossRefGoogle Scholar
7.Michel, C., Moreau, J.M., Achenbac, G.D., Gerson, R., and James, W.J.: Atomic structures of 2 rhombohedral ferroelectric phases in Pb(Zr, Ti)O3 solid solution series. Solid State Commun. 7, 865 (1969).CrossRefGoogle Scholar
8.Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).CrossRefGoogle ScholarPubMed
9.Shvartsman, V.V., Kleemann, W., Haumont, R., and Kreisel, J.: Large bulk polarization and regular domain structure in ceramic BiFeO3. Appl. Phys. Lett. 90, 172115 (2007).CrossRefGoogle Scholar
10.Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000).CrossRefGoogle Scholar
11.Kumar, M.M., Srinivas, A., and Suryanarayana, S.V.: Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855 (2000).CrossRefGoogle Scholar
12.Itoh, N., Shimura, T., Sakamoto, W., and Yogo, T.: Fabrication and characterization of BiFeO3–BaTiO3 ceramics by solid state reaction. Ferroelectrics 356, 311 (2007).CrossRefGoogle Scholar
13.Horibe, Y., Nakayama, M., Hosokoshi, Y., Asaka, T., Matsui, Y., Asada, T., Koyama, Y., and Mori, S.: Microstructures associated with dielectric and magnetic properties in (1– x)BiFeO3xBaTiO3. Jpn. J. Appl. Phys., Part 1 44, 7148 (2005).CrossRefGoogle Scholar
14.Kitagawa, S., Ozaki, T., Horibe, Y., Yoshii, K., and Mori, S.: Ferroelectric domain structures in BiFeO3–BaTiO3. Ferroelectrics 376, 318 (2008).CrossRefGoogle Scholar
15.Leontsev, S.O. and Eitel, R.E.: Dielectric and piezoelectric properties in Mn-modified (1– x)BiFeO3xBaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2957 (2009).CrossRefGoogle Scholar
16.Yoneda, Y., Yoshii, K., Kohara, S., Kitagawa, S., and Mori, S.: Local structure of BiFeO3–BaTiO3 mixture. Jpn. J. Appl. Phys. 47, 7590 (2008).CrossRefGoogle Scholar
17.Damjanovic, D. and Demartin, M.: The Rayleigh law in piezoelectric ceramics. J. Phys. D: Appl. Phys. 29, 2057 (1996).CrossRefGoogle Scholar
18.Hall, D.A.: Review: Nonlinearity in piezoelectric ceramics. J. Mater. Sci. 36, 4575 (2001).CrossRefGoogle Scholar
19.Eitel, R.E., Shrout, T.R., and Randall, C.A.: Nonlinear contributions to the dielectric permittivity and converse piezoelectric coefficient in piezoelectric ceramics. J. Appl. Phys. 99, 124110 (2006).CrossRefGoogle Scholar
20.Eitel, R.E. and Randall, C.A.: Octahedral tilt-suppression of ferroelectric domain wall dynamics and the associated piezoelectric activity in Pb(Zr, Ti)O3. Phys. Rev. B 75, 094106 (2007).CrossRefGoogle Scholar
21.Damjanovic, D.: Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82, 1788 (1997).CrossRefGoogle Scholar
22.IRE Standards on Piezoelectric Crystals: Measurements of piezoelectric ceramics. Proc. Inst. Radio Eng. 49, 1161 (1961).Google Scholar
23.Pramanick, A., Damjanovic, D., Nino, J.C., and Jones, J.L.: Subcoercive cyclic electrical loading of lead zirconate titanate ceramics. I: Nonlinearities and losses in the converse piezoelectric effect. J. Am. Ceram. Soc. 92, 2291 (2009).CrossRefGoogle Scholar
24.Dai, Y.J., Zhang, S.J., Shrout, T.R., and Zhang, X.W.: Piezoelectric and ferroelectric properties of Li-doped (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 93, 1108 (2010).CrossRefGoogle Scholar
25.Hiruma, Y., Nagata, H., and Takenaka, T.: Depolarization temperature and piezoelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2Li1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. Ceram. Int. 35, 117 (2009).CrossRefGoogle Scholar
26.Shrout, T.R. and Zhang, S.J.: Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 111 (2007).CrossRefGoogle Scholar
27.Takenaka, T., Nagata, H., and Hiruma, Y.: Current developments and prospective of lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 47, 3787 (2008).CrossRefGoogle Scholar
28.Berlincourt, D.A., Curran, D.R., and Jaffe, H.: Physical Acoustics: Principle and Methods, edited by Mason, W.P. (Academic Press, New York, 1964).Google Scholar
29.Zhang, S.J., Eitel, R.E., Randall, C.A., Shrout, T.R., and Alberta, E.F.: Manganese-modified BiScO3–PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor. Appl. Phys. Lett. 86, 262904 (2005).CrossRefGoogle Scholar
30.Zhang, Q.M., Wang, H., Kim, N., and Cross, L.E.: Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature-dependence on lead-zirconate-titanate ceramics. J. Appl. Phys. 75, 454 (1994).CrossRefGoogle Scholar
31.Hollenstein, E., Davis, M., Damjanovic, D., and Setter, N.: Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett. 87, 182905 (2005).CrossRefGoogle Scholar
32.Li, S.P., Bhalla, A.S., Newnham, R.E., and Cross, L.E.: Quantitative-evaluation of extrinsic contribution to piezoelectric coefficient d 33 in ferroelectric PZT ceramics. Mater. Lett. 17, 21 (1993).CrossRefGoogle Scholar
33.Zhang, Q.M., Pan, W.Y., Jang, S.J., and Cross, L.E.: Domain-wall excitations and their contributions to the weak-signal response of doped lead zirconate titanate ceramics. J. Appl. Phys. 64, 6445 (1988).CrossRefGoogle Scholar
34.Perrin, V., Troccaz, M., and Gonnard, P.: Non-linear behavior of the permittivity and of the piezoelectric strain constant under high electric field drive. J. Electroceram. 4, 189 (2000).CrossRefGoogle Scholar
35.Ozaki, T., Kitagawa, S., Nishihara, S., Hosokoshi, Y., Suzuki, M., Noguchi, Y., Miyayama, M., and Mori, S.: Ferroelectric properties and nano-scaled domain structures in (1– x)BiFeO3xBaTiO3 (0.33 < x < 0.50). Ferroelectrics 385, 155 (2009).CrossRefGoogle Scholar
36.Zhang, S.T., Kounga, A.B., Aulbach, E., Ehrenberg, H., and Rodel, J.: Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007).CrossRefGoogle Scholar
37.Zhang, S.T., Kounga, A.B., Aulbach, E., Jo, W., Granzow, T., Ehrenberg, H., and Rodel, J.: Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. Temperature dependent properties. J. Appl. Phys. 103, 034108 (2008).CrossRefGoogle Scholar
38.Scott, J.F.: Leading the way to lead-free. ChemPhysChem 11, 341 (2010).CrossRefGoogle ScholarPubMed
39.Zeches, R.J., Rossell, M.D., Zhang, J.X., Hatt, A.J., He, Q., Yang, C.H., Kumar, A., Wang, C.H., Melville, A., Adamo, C., Sheng, G., Chu, Y.H., Ihlefeld, J.F., Erni, R., Ederer, C., Gopalan, V., Chen, L.Q., Schlom, D.G., Spaldin, N.A., Martin, L.W., and Ramesh, R.: A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977 (2009).CrossRefGoogle ScholarPubMed
40.Akdogan, E.K., Kerman, K., Abazari, M., and Safari, A.: Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)–(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett. 92, 112908 (2008).CrossRefGoogle Scholar