Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T13:21:18.663Z Has data issue: false hasContentIssue false

Nanoparticle-based Calcium Phosphate Substrates: Gas Phase Synthesis and Potential Applications

Published online by Cambridge University Press:  31 January 2011

Renato Camata
Affiliation:
camata@uab.edu, University of Alabama at Birmingham, Physics, Birmingham, Alabama, United States
Rebbeca Kraft
Affiliation:
KRAFTRE1@GCC.EDU, University of Alabama at Birmingham, Physics, Birmingham, Alabama, United States
Marco Bottino
Affiliation:
bottino@uab.edu, University of Alabama at Birmingham, Materials Science and Engineering, Birmingham, Alabama, United States
Parimal V Bapat
Affiliation:
parimal3@uab.edu, University of Alabama at Birmingham, Physics, Birmingham, Alabama, United States
Get access

Abstract

Emulating the ECM microenvironment of natural tissue and understanding how such an environment affects integrin function is a major goal of regenerative medicine and tissue engineering. In this work we have combined laser and aerosol techniques to create nanoengineered substrates comprising calcium phosphate nanoparticles of well controlled size on atomically flat SiO2 layers. In our process, gas suspended calcium phosphate nanoparticles are generated by ablation of solid a hydroxyapatite target inside a tube furnace at 800-900°C in presence of Argon/H2O flow using a KrF excimer laser and deposited on a silicon substrate via electrostatic precipitation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Geiger, B. Bershadsky, A. Pankov, R. Yamada, K. M. Nat. Rev. Mol. Cell Biol. 2001, 2, 793805.Google Scholar
2 Garcia, A. J. Biomaterials 2005, 26, 75257529.Google Scholar
3 Huang, J. Grater, S. V. Corbellini, F. Rinck, S. Bock, E. Kemkemer, R. Kessier, H. Ding, J. and Spatz, J. P. Nano Letters 2009, 9, 11111116.Google Scholar
4 Sawyer, A. Hennessey, K. M. and Bellis, S. L. Biomaterials 26, 1467 (2005).Google Scholar
5 Groot, K. De, Biocermaics of calcium phosphate (CRC Press, 1983).Google Scholar
6 Hench, L. L. and Wilson, J. An Introduction to bioceramics (World Scientific, 1983).Google Scholar
7 Groot, K. De, Mater. Technol. 8 (1993) 12.Google Scholar
8 Suchanek, W. and Yoshimura, M. J. Mater. Res 13 (1998) 94.Google Scholar
9 Albert, B. Brady, D. Lewis, J. Raff, M. Roberts, K. Watson, J.. Molecular Biology of the Cell. 3rd ed. (Garland Publishing, 1994)Google Scholar
10 Rusu, V. M, Ng, C.H. Wailke, M., Tiersch, B. Fratzl, P. and Peter, M. Biomaterials. 26 (2005), 54145426.Google Scholar
11 Li, H. Zhu, M. Y. and Zhou, C.R. Journal of Materials Science. 43 (2008), 384389.Google Scholar
12 Wang, X. Zhuang, J. Peng, Q., Li, Y. Adv Matter. 18 (2006), 20312034.Google Scholar
13 Kester, M. Heakal, Y. Fox, T. Sharma, A. Robertson, G. P. Morgan, Thomas. T. Altlnoglu, E. I. Tabkovic, A., Parette, M. R. Rouse, S. R. Rulz-Velasco, V. and Adair, H.. Nano Letters 8, 12 (2008), 41164121.Google Scholar
14 Brown, S. Kim, H. and R.Camata, P.. Mater. Res. Soc. Symp. 845 (2005), AA5.35.1- AA5.35.6.Google Scholar
15 Nicholas, W.T. Malyavanatham, G. Henneke, D.E., O'Brien, D.T., Becker, M. F. and Keto, J.W., J. Nanopart. Res. 4, 423 (2002).Google Scholar
16 Camata, R. P. Hirasawa, M. Okuyama, K. and Takeuchi, K. J. Aerosol Sci. 31. (2000), 391.Google Scholar
17 Makimura, T., Kunii, Y. and Murakami, K., Jpn. J. Appl. Phys. 35, 4780 (1996).Google Scholar
18 Kelly, R. and Miotello, A. “Mechanisms of Pulsed laser sputtering,” Pulsed Laser Deposition of Thin Films, ed. Christey, D. B and Hubler, G. K. (Wiley, 1994) pp. 5587.Google Scholar
19 Cheung, J. T. “History and fundamentals of pulsed laser deposition,” Pulsed Laser Deposition of Thin Films, ed. Christey, D. B and Hubler, G. K. (Wiley, 1994) pp. 1415.Google Scholar