Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-22T01:41:11.837Z Has data issue: false hasContentIssue false

Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies

Published online by Cambridge University Press:  13 November 2008

A. IDRIS*
Affiliation:
Department of Microbiology and Plant Pathology, University of Pretoria, 0002 Pretoria, South Africa
N. LABUSCHAGNE
Affiliation:
Department of Biology, Alemaya University, Diredawa 138, Ethiopia
L. KORSTEN
Affiliation:
Department of Biology, Alemaya University, Diredawa 138, Ethiopia
*
*To whom all correspondence should be addressed. Email: ahmed.idris@fabi.up.ac.za

Summary

The screening of rhizobacteria for growth promotion of sorghum (Sorghum bicolour (L.) Moench) was conducted under greenhouse conditions for a total of 78 bacteria isolated from the rhizosphere of sorghum in Ethiopia, and 86 isolates from the rhizosphere and rhizoplane of grasses in South Africa. Three isolates from Ethiopia, all identified as Bacillus cereus, enhanced growth promotion by resulting in statistically significant increases in at least five parameters. Of these, B. cereus (KBE7-8) resulted in significant increase in shoot and root biomass. Among effective isolates from South Africa, B. cereus (NAS4-3) and Stenotrophomonas maltophilia (KBS9-B) showed significant increases in all the parameters measured. The isolates which resulted in significant growth promotion colonized the roots effectively with a count up to ⩾108 cfu/g. In the study conducted to elucidate the possible modes of action by these effective isolates, indole 3-acetic acid-like substances were detected in culture filtrates of the isolates ranging from 4·2 μg/ml by Serratia marcescens (KBS9-R) to 22·8 μg/ml by B. cereus (KBS5-H) in the presence of 2 mg tryptophan/g nutrient broth solution. Higher rates of solubilization of tricalcium phosphate on Pikovskaya agar medium were shown by Chryseomonas luteola (KBS5-F), S. marcescens (KBS6-H) and B. cereus (KBE9-1). There is very limited knowledge of the use of rhizobacteria in agriculture in Ethiopia and South Africa. The current study therefore generates valuable information towards application of plant growth promoting rhizobacteria as alternatives to chemical fertilizers.

Type
Crops and Soils
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asghar, H. N., Zahir, Z. A., Arshad, M. & Khaliq, A. (2002). Relationship between in-vitro production of auxin by rhizobacteria and their growth promoting activities in Brassica juncea L. Biology and Fertility of Soils 35, 231237.Google Scholar
Asghar, H. N., Zahir, Z. A. & Arshad, M. (2004). Screening rhizobacteria for improving the growth, yield, and oil content of canola (Brassica napus L.). Australian Journal of Agricultural Research 55, 187194.CrossRefGoogle Scholar
Bashan, Y. & de-Bashan, L. E. (2004). Plant growth promoting bacteria. In Encyclopaedia of Soils in the Environment, vol. 1 (Ed. Hillel, D.), pp. 103115. Oxford, UK: Elsevier.Google Scholar
Berge, G., Eberl, L. & Hartman, A. (2005). The rhizosphere as areservior for opportunistic human pathogenic bacteria. Environmental Microbiology 7, 16731685.CrossRefGoogle Scholar
Berge, O., Heulin, T. & Balandreau, J. (1991). Diversity of diazotroph populations in the rhizosphere of maize (Zea mays L.) growing on different French soils. Biology and Fertility of Soils 11, 210215.CrossRefGoogle Scholar
Bertrand, H., Nalin, R., Bally, R. & Cleyet-Marel, J. C. (2001). Isolation and identification of the most efficient plant growth promoting bacteria associated with canola (Brassica napus). Biology and Fertility of Soils 33, 152156.CrossRefGoogle Scholar
Bloemberg, G. V. & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology 4, 343350.CrossRefGoogle ScholarPubMed
Cattelan, A. J., Hartel, P. G. & Fuhrmann, J. J. (1999). Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal 63, 16701680.CrossRefGoogle Scholar
Chen, Y., Mei, R., Lu, S., Liu, L. & Kloepper, J. W. (1994). The use of yield increasing bacteria as plant growth promoting rhizobacteria in Chinese agriculture. In Management of Soil Borne Diseases (Eds Gupta, U. K. & Utkhede, R.), pp. 165184. New Delhi: M/S Narosa Publishing House.Google Scholar
Coenye, T., Falsen, E., Vancanneyt, M., Hoste, B., Govan, J. R. W., Kersters, K. & Vandamme, P. (1999). Classification of Alcaligens faecalis like isolates from the environment and human clinical samples as Ralstonia giladii sp. nov. International Journal of Systematic Bacteriology 49, 405413.Google ScholarPubMed
Cook, R. J. (2002). Advances in plant health management in the 20th century. Annual Review of Phytopathology 38, 95116.CrossRefGoogle Scholar
Dashti, N., Zhang, F., Hynes, R. & Smith, D. L. (1997). Application of plant growth-promoting rhizobacteria to soybean (Glycine max (L.) Merr.) increases protein and dry matter yield under short-season conditions. Plant and Soil 188, 3341.CrossRefGoogle Scholar
Davis, M. A. & Bockus, W. W. (2001). Evidence for a Pythium species as a chronic yield reducer in a continuous grain sorghum field. Plant Disease 85, 780784.CrossRefGoogle Scholar
Donnate-Correa, J., Leon-Barrios, M. & Perez-Galdona, R. (2004). Screening for plant growth promoting rhizobacteria in Chamayecytisus proliferus (tagasaste), a forage tree shrub legume endemic to the Canary islands. Plant and Soil 266, 261272.CrossRefGoogle Scholar
FAO (1999). FAO Quarterly Bulletin of Statistics, vol. 12. Rome, Italy: FAO.Google Scholar
FAOSTAT (2005). Statistics Database. Available online at: http://faostat.fao.org (verified 13 October 2008).Google Scholar
Glick, B. R. (1995). The enhancement of plant growth by free living bacteria. Canadian Journal of Microbiology 41, 109117.CrossRefGoogle Scholar
Gregersen, T. (1978). Rapid method for distinction of Gram-positive bacteria. European Journal of Applied Microbiology and Biotechnology 5, 123127.CrossRefGoogle Scholar
Gupta, R., Singal, R., Sankar, A., Chander, R. M. & Kumar, R. S. (1994). A modified plate assay for screening phosphate solubilizing microorganisms. Journal of General and Applied Microbiology 40, 255260.CrossRefGoogle Scholar
Gupta, S. S. & Panchapakesan, S. (1979). Multiple Decision Procedures: Theory and Methodology of Selecting and Ranking Populations. New York: John Wiley & Sons.Google Scholar
Han, D. Y., Coplin, D. L., Bauer, W. D. & Hoitink, H. A. J. (2000). A rapid bioassay for screening rhizosphere microorganisms for their ability to induce systemic resistance. Phytopathology 90, 327332.CrossRefGoogle ScholarPubMed
House, L. R. (1995). Sorghum: one of the world's great cereals. African Crop Science Journal 3, 135142.Google Scholar
Hugh, R. & Leifson, H. (1953). The taxonomic significance of fermentative versus oxidative Gram-negative bacteria. Journal of Bacteriology 66, 2426.CrossRefGoogle ScholarPubMed
Huluka, M. & Esele, J. P. E. (1992). Sorghum diseases in Eastern Africa. In Sorghum and Millet Diseases: a Second World Review (Eds De-Millano, W. J. A., Frederiksen, R. A., Mughogo, L. K. & Bengston, D. J.), pp. 3639. Pathacheru, India: ICRISTAT.Google Scholar
Igual, J. M., Valverde, A., Cervantes, E. & Velazquez, E. (2001). Phosphate solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21, 561568.CrossRefGoogle Scholar
Idris, H. A., Labuschagne, N. & Korsten, L. (2008). Suppression of Pythium ultimum root rot of sorghum by rhizobacterial isolates from Ethiopia and South Africa. Biological Control 45, 7284.CrossRefGoogle Scholar
Katiyar, V. & Goel, R. (2004). Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regulation 42, 239244.CrossRefGoogle Scholar
Khalid, A., Arshad, M., Zahir, Z. A. & Khaliq, A. (1997). Potential of plant growth promoting rhizobacteria for enhancing wheat (Triticum aestivum L.) yield. Journal of Animal and Plant Sciences 7, 5356.Google Scholar
Khalid, A., Arshad, M. & Zahir, Z. A. (2004). Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology 96, 473480.CrossRefGoogle ScholarPubMed
King, E. O., Ward, M. K. & Ranney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine 44, 301307.Google ScholarPubMed
Kloepper, J. W., Scher, F. M., Laliberté, M. & Tipping, B. (1986). Emergence promoting rhizobacteria: description and implications for agriculture. In Iron, Siderophores and Plant Disease (Ed. Swinburne, T. R.), pp. 155164. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Kloepper, J. W., Lifshitz, R. & Zablotowicz, R. M. (1989). Free living soil bacterial inocula for enhancing crop productivity. Trends in Biotechnology 7, 3943.CrossRefGoogle Scholar
Kobayashi, D. Y., Guglielmoni, M. & Clarke, B. B. (1995). Isolation of the chitinolytic bacteria Xanthomonas maltophilia and Serratia marcescens as biological control agents for summer patch disease of turfgrass. Soil Biology and Biochemistry 27, 14791487.CrossRefGoogle Scholar
Kobayashi, D. Y., Reedy, R. M., Bick, J. A. & Oudemans, P. V. (2002). Characterization of chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Applied and Environmental Microbiology 68, 10471054.CrossRefGoogle ScholarPubMed
Kovacs, N. (1956). Identification of Pseudomonas pyocyanae by the oxidase reaction. Nature 178, 703.CrossRefGoogle Scholar
Lottman, J., Heuer, H., Smalla, K. & Berg, G. (1999). Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant associated bacteria. FEMS Microbiology Ecology 29, 365367.CrossRefGoogle Scholar
Mayak, S., Tirosh, T. & Glick, B. R. (2001). Stimulation of the growth of tomato, pepper and mung bean plants by the plant growth promoting bacterium Enterobacter cloacae CAL3. Biological Agriculture and Horticulture 19, 261274.CrossRefGoogle Scholar
Mohran, Z. S., Arthur, R. R., Oyufo, B. A., Perusky, L. F., Wasfy, M. O., Ismael, T. F. & Murphy, J. R. (1998). Differentiation of Campylobacter isolates on the basis of sensitivity to boiling in water as measured by PCR-detectable DNA. Applied and Environmental Microbiology 64, 363365.CrossRefGoogle ScholarPubMed
Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170, 265270.CrossRefGoogle ScholarPubMed
Nelson, L. M. (2004). Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Online Crop Management doi:10.1094/CM-2004-0310-05-RV. Available online at: http://www.plantmanagementnetwork.org/pub/cm/review/2004/rhizobacteria/ (verified 13 October 2008).Google Scholar
Pacovsky, R. S. (1990). Development and growth effects in the SorghumAzosprillum association. Journal of Applied Microbiology 68, 555563.Google Scholar
Patten, C. L. & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology 42, 207220.CrossRefGoogle ScholarPubMed
Patten, C. L. & Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology 68, 37953801.CrossRefGoogle ScholarPubMed
Pikovskaya, R. I. (1948). Mobilization of phosphorus in connection with the vital activity of some microbial species. Microbiologia 17, 362370.Google Scholar
Rashad, M. H., Ragab, A. A. & Salem, S. M. (2002). The influence of some Bradyrhizobium and Rhizobium strains as plant growth promoting rhizobacteria on the growth and yield of sorghum (Sorghum bicolor L.) plants. In Plant Nutrition (Eds Horst, W. J., Schenk, M. K., Burkert, A., Claassen, N., Flessa, H., Frommer, W. B., Goldbach, H., Olfs, H. W., Romheld, V., Sattelmacher, B., Schmidhalter, U., Schubert, S., Wiren, N. V. & Wittenmayer, L.), pp. 664665. The Netherlands: Springer.Google Scholar
Rodriguez, H. & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17, 319339.CrossRefGoogle ScholarPubMed
Ryu, C.-M., Hu, C.-H., Locy, R. D. & Kloepper, J. W. (2005). Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant and Soil 268, 285292.CrossRefGoogle Scholar
Saubidet, M. I., Fatta, N. & Barneix, A. J. (2002). The effect of inoculation with Azosprillum brasilense on growth and nitrogen utilization by wheat plants. Plant and Soil 245, 215222.CrossRefGoogle Scholar
Schwyn, B. & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160, 4756.CrossRefGoogle ScholarPubMed
Singh, B. K., Munro, S., Potts, J. M. & Millard, P. (2007). Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Applied Soil Ecology 36, 147155.CrossRefGoogle Scholar
Sturz, A. V., Matheson, B. G., Arsenault, W., Kimpniski, J. & Christie, B. R. (2001). Weeds as a source of plant growth promoting rhizobacteria in agricultural soils. Canadian Journal of Microbiology 47, 10131024.CrossRefGoogle ScholarPubMed
Suzuki, S., He, Y. & Oyaizu, H. (2003). Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Current Microbiology 47, 138143.CrossRefGoogle ScholarPubMed
Thakuria, D., Talukdar, N. C., Goswami, C., Hazarika, S., Boro, R. C. & Khan, M. R. (2004). Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Current Science 86, 978985.Google Scholar
The Guide To Genstat®Release 8 (2005). (Ed. Payne, R. W.). Published by VSN International, UK, ISBN 1-904375-16-2.Google Scholar
Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255, 571586.CrossRefGoogle Scholar
Weller, D. M. (1998). Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology 26, 379407.CrossRefGoogle Scholar
Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52, 487511.CrossRefGoogle ScholarPubMed
Xia, L., Ding, X., Li, J. & Mei, R. (1990). Mechanism of PGPR: influence of PGPR on physiology, resistance, quality and yield of rapeseed. Agriculture Science in Hunan 106, 2426.Google Scholar
Zahir, Z. A., Akram, M., Arshad, M. & Khalid, A. (1998). Improving maize yield by inoculation with plant growth promoting rhizobacteria. Pakistan Journal of Soil Science 15, 711.Google Scholar
Zhang, F., Dashti, N., Hynes, H. & Smith, D. L. (1996). Plant growth promoting rhizobacteria and soybean (Glycine max L. Merr.) nodulation and nitrogen fixation at suboptimal root zone temperatures. Annals of Botany 77, 453459.CrossRefGoogle Scholar
Zhang, Z., Yuen, G. Y., Sarath, G. & Penheiter, A. R. (2000). Chitinase from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathology 91, 204211.CrossRefGoogle Scholar