Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T22:12:17.528Z Has data issue: false hasContentIssue false

Effect of hypoeutectic boron modification on the dynamic properties of Ti-6Al-4V alloy

Published online by Cambridge University Press:  04 July 2016

Aashranth Bommakanti
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
Shibayan Roy*
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India; and Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India
Satyam Suwas
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
*
a)Address all correspondence to this author. e-mail: shibayan@matsc.iitkgp.ernet.in
Get access

Abstract

The effect of boron on the room-temperature dynamic properties of Ti-6Al-4V alloy with and without boron addition in as-cast and β-forged conditions is studied by varying number of loading cycles, frequency of loading, and strain amplitude. Boron addition seems to lower the complex modulus and increases the damping of the base Ti-6Al-4V alloy. TiB precipitates in boron modified alloys play a key role in improving the damping through dislocation pinning (at all frequencies) and grain boundary pinning (at high frequencies). These effects are more prominent after β-forging wherein arrangement of TiB particles is found to be a deciding factor. Strain amplitude variation of damping shows trend reversal between 10 and 87 Hz frequencies; damping increases with strain amplitude at 10 Hz but reduces with strain amplitude at 87 Hz. A damping peak occurs near the 50 Hz frequency, and cycling through this range results in a significant improvement in damping (21% for as-cast and 93% for β-forged alloys).

Type
Focus Section: Reinventing Boron Chemistry and Materials for the 21st Century
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banerjee, D. and Williams, J.C.: Perspectives on titanium science and technology. Acta Mater. 61(3), 844 (2013).Google Scholar
Kobryn, P.A. and Semiatin, S.L.: Microstructure and texture evolution during solidification processing of Ti-6Al-4V. J. Mater. Process. Technol. 135(2–3), 330 (2003).Google Scholar
Roy, S., Suwas, S., Tamirisakandala, S., Miracle, D.B., and Srinivasan, R.: Development of solidification microstructure in boron-modified alloy Ti-6Al-4V-0.1B. Acta Mater. 59(14), 5494 (2011).Google Scholar
Tamirisakandala, S., Bhat, R.B., Tiley, J.S., and Miracle, D.B.: Grain refinement of cast titanium alloys via trace boron addition. Scr. Mater. 53(12), 1421 (2005).Google Scholar
Tamirisakandala, S., Bhat, R.B., Miracle, D.B., Boddapati, S., Bordia, R., Vanover, R., and Vasudevan, V.K.: Effect of boron on the beta transus of Ti-6Al-4V alloy. Scr. Mater. 53(2), 217 (2005).Google Scholar
Sen, I., Tamirisakandala, S., Miracle, D.B., and Ramamurty, U.: Microstructural effects on the mechanical behavior of B-modified Ti-6Al-4V alloys. Acta Mater. 55(15), 4983 (2007).Google Scholar
Sen, I., Gopinath, K., Datta, R., and Ramamurty, U.: Fatigue in Ti-6Al-4V-B alloys. Acta Mater. 58(20), 6799 (2010).CrossRefGoogle Scholar
Tamirisakandala, S., Bhat, R.B., Tiley, J.S., and Miracle, D.B.: Processing, microstructure, and properties of Î2 titanium alloys modified with boron. J. Mater. Eng. Perform. 14(6), 741 (2005).CrossRefGoogle Scholar
Roy, S., Suwas, S., Tamirisakandala, S., Srinivasan, R., and Miracle, D.B.: Microstructure and texture evolution during β extrusion of boron modified Ti-6Al-4V alloy. Mater. Sci. Eng., A 540, 152 (2012).Google Scholar
Roy, S. and Suwas, S.: Microstructure and texture evolution during sub-transus thermomechanical processing of Ti-6Al-4V-0.1B alloy: Part I. Hot rolling in (α + β) phase field. Metall. Mater. Trans. A 44(7), 3303 (2013).Google Scholar
Roy, S., Karanth, S., and Suwas, S.: Microstructure and texture evolution during sub-transus thermo-mechanical processing of Ti-6Al-4V-0.1B alloy: Part II. Static annealing in (α + β) regime. Metall. Mater. Trans. A 44(7), 3322 (2013).CrossRefGoogle Scholar
Roy, S. and Suwas, S.: The influence of temperature and strain rate on the deformation response and microstructural evolution during hot compression of a titanium alloy Ti-6Al-4V-0.1B. J. Alloys Compd. 548, 110 (2013).Google Scholar
Roy, S., Madhavan, R., and Suwas, S.: Crystallographic texture and microstructure evolution during hot compression of Ti-6Al-4V-0.1B alloy in the (α + β)-regime. Philos. Mag. 94(4), 358 (2013).Google Scholar
Roy, S., Sarkar, A., and Suwas, S.: On characterization of deformation microstructure in Boron modified Ti-6Al-4V alloy. Mater. Sci. Eng., A 528(1), 449 (2010).Google Scholar
Roy, S. and Suwas, S.: Deformation mechanisms during superplastic testing of Ti-6Al-4V-0.1B alloy. Mater. Sci. Eng., A 574, 205 (2013).Google Scholar
Roy, S. and Suwas, S.: On the absence of shear cracking and grain boundary cavitation in secondary tensile regions of Ti-6Al-4V-0.1B alloy during hot (α + β)-compression. Philos. Mag. 94(5), 447 (2013).Google Scholar
Roy, S. and Suwas, S.: Enhanced superplasticity for (α + β)-hot rolled Ti-6Al-4V-0.1B alloy by means of dynamic globularization. Mater. Des. 58, 52 (2014).CrossRefGoogle Scholar
Sen, I. and Ramamurty, U.: Elastic modulus of Ti-6Al-4V-xB alloys with B up to 0.55 wt%. Scr. Mater. 62(1), 37 (2010).Google Scholar
Mishra, S. and Asundi, M.K.: Internal friction studies in titanium and titanium base alpha and beta alloys. In 2nd International Conference on Titanium, Vol. 2, R.I. Jaffee, and H.M. Burte, ed.; Plenum Press, New York, 1972, p. 883.Google Scholar
Asundi, M.K. and Rao, C.N.: Internal friction in hexagonal metalś. Bull. Mater. Sci. 6(5), 959 (1984).CrossRefGoogle Scholar
Mishra, S. and Asundi, M.K.: Relaxation processes in metastable and stable beta-titanium alloys. In 3rd International Conference on Titanium, Vol. 3, A.F. Belov, , ed. (Plenum Press, New York, 1976); p. 1661.Google Scholar
Ito, Y., Moriguchi, Y., Nishimura, T., Nagai, N., Hiromoto, A., Daikoku, T., and Ueda, S.: Internal Friction Studies of Ti-6Al-4V-2.5Mo Alloy. In Titanium Science and Technology, Vol. 3, G. Lutjering, , U. Zwicker, , and W. Bunk, , eds. (Deutsche Gesellschaft fur Metallkund, E.V Adenauerallee, Oberusel, 1984); p. 1643.Google Scholar
Hiromoto, A., Daikoku, T., Ueda, S., Ito, Y., Moriguchi, Y., and Nagai, N.: Mechanical properties of high damping alloy Ti-6Al-4V-2.5Mo. In Titanium Science and Technology, Vol. 3, G. Lutjering, , U. Zwicker, , and W. Bunk, , eds. (Deutsche Gesellschaft fur Metallkund, E.V Adenauerallee, Oberusel, 1984); p. 1683.Google Scholar
Farkas, J. and Jármai, K.: Analysis and Optimum Design of Metal Structures (Taylor & Francis, 1997).Google Scholar
Zhang, J., Perez, R.J., Wong, C.R., and Lavernia, E.J.: Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites. Mater. Sci. Eng., R 13(8), 325 (1994).Google Scholar
Roy, S., Tungala, V., and Suwas, S.: Effect of hypoeutectic boron addition on the β transus of Ti-6Al-4V alloy. Metall. Mater. Trans. A 42(9), 2535 (2011).Google Scholar
Nowick, A.S.: Anelastic Relaxation in Crystalline Solids (Elsevier Science, Burlington, 2012).Google Scholar
de Batist, R.: Internal Friction of Structural Defects in Crystalline Solids, R. de Batist, , ed. (North-Holland Publishing Company, Amsterdam, 1972).Google Scholar
Blanter, M.S., Golovin, I.S., Neuhäuser, H., and Sinning, H.R.: Internal Friction in Metallic Materials: A Handbook (Springer Berlin Heidelberg, New York, 2007).Google Scholar
Zener, C.: Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948).Google Scholar
Puškár, A.: Internal Friction of Materials (Cambridge International Science Publishing, Cambridge, 2001).Google Scholar
Lütjering, G.: Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Mater. Sci. Eng., A 243(1–2), 32 (1998).Google Scholar
Semiatin, S.L. and Lahoti, G.D.: The occurrence of shear bands in isothermal, hot forging. Metall. Mater. Trans. A 13(2), 275 (1982).CrossRefGoogle Scholar
Semiatin, S.L. and Lahoti, G.D.: Effect of shear bands on service properties of Ti-6Al-2Sn-4Zr-2Mo-0.1Si forgings. Metall. Mater. Trans. A 14A(4), 743 (1983).Google Scholar
Semiatin, S.L. and Lahoti, G.D.: Occurrence of shear bands in non-isothermal, hot forging of Ti-6Al-2Sn-4Zr-2Mo-0.1Si. Metall. Mater. Trans. A 14A(1), 105 (1983).Google Scholar
Nowacki, W.: Thermoelasticity (Elsevier Science, Burlington, 2013).Google Scholar
Zener, C.: Internal friction in solids I. Theory of internal friction in reeds. Phys. Rev. 52(3), 230 (1937).Google Scholar
Zener, C.: Internal friction in solids II. General theory of thermoelastic internal friction. Phys. Rev. 53(1), 90 (1938).Google Scholar
De, S.K. and Aluru, N.R.: Theory of thermoelastic damping in electrostatically actuated microstructures. Phys. Rev. B: Condens. Matter Mater. Phys. 74(14), 144305 (2006).CrossRefGoogle Scholar
Everett, R.: Metal Matrix Composites: Processing and Interfaces (Elsevier Science, Oxford, 1991).Google Scholar
Arsenault, R.J., Shi, N., Feng, C.R., and Wang, L.: Localized deformation of SiC–Al composites. Mater. Sci. Eng., A 131(1), 55 (1991).CrossRefGoogle Scholar
Smith, L.F., Krawitz, A.D., Clarke, P., Saimoto, S., Shi, N., and Arsenault, R.J.: Residual stresses in discontinuous metal matrix composites. Mater. Sci. Eng., A 159(2), 13 (1992).Google Scholar
Zhang, J., Perez, R.J., and Lavernia, E.J.: Dislocation-induced damping in metal matrix composites. J. Mater. Sci. 28(3), 835 (1993).Google Scholar
Lee, D-G., Lee, S., and Lee, Y.: Effect of precipitates on damping capacity and mechanical properties of Ti-6Al-4V alloy. Mater. Sci. Eng., A 486(1–2), 19 (2008).Google Scholar
Roy, S., Kannan, G., Suwas, S., and Surappa, M.K.: Effect of extrusion ratio on the microstructure, texture and mechanical properties of (Mg/AZ91)m–SiCp composite. Mater. Sci. Eng., A 624, 279 (2015).Google Scholar
Gu, J., Zhang, X., Qiu, Y., and Gu, M.: Damping behaviors of magnesium matrix composites reinforced with Cu-coated and uncoated SiC particulates. Compos. Sci. Technol. 65(11–12), 1736 (2005).CrossRefGoogle Scholar
Roy, S., Sarkar, A., and Suwas, S.: On characterization of deformation microstructure in boron modified Ti-6Al-4V alloy. Mater. Sci. Eng., A 528(1), 449 (2010).Google Scholar
Ravi Chandran, K.S., Panda, K.B., and Sahay, S.S.: TiBw-reinforced Ti composites: Processing, properties, application prospects, and research needs. JOM 56(5), 42 (2004).Google Scholar
Povolo, F.: On the Granato–Lücke expression for the amplitude-dependent damping. Scr. Metall. 9(9), 865 (1975).Google Scholar
Granato, A. and Lücke, K.: Theory of mechanical damping due to dislocations. J. Appl. Phys. 27(6), 583 (1956).Google Scholar
Granato, A. and Lücke, K.: Application of dislocation theory to internal friction phenomena at high frequencies. J. Appl. Phys. 27(7), 789 (1956).Google Scholar
Teutonico, L.J., Granato, A.V., and Lücke, K.: Theory of the thermal breakaway of a pinned dislocation line with application to damping phenomena. J. Appl. Phys. 35(1), 220 (1964).Google Scholar
Suri, S., Viswanathan, G.B., Neeraj, T., Hou, D.H., and Mills, M.J.: Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy. Acta Mater. 47(3), 1019 (1999).Google Scholar
Hosford, W.F.: Mechanical Behavior of Materials (Cambridge University Press, New York, 2005).Google Scholar
Ardell, A.J.: Precipitation hardening. Metall. Mater. Trans. A 16(12), 2131 (1985).Google Scholar
Jun, J-H.: Damping behavior of Mg–Zn–Al casting alloys. Mater. Sci. Eng., A 665, 86 (2016).Google Scholar