Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T12:30:49.276Z Has data issue: false hasContentIssue false

Synthesis of ultra-refractory transition metal diboride compounds

Published online by Cambridge University Press:  01 July 2016

William G. Fahrenholtz*
Affiliation:
Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
Jon Binner
Affiliation:
School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
Ji Zou
Affiliation:
School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
*
a) Address all correspondence to this author. e-mail: billf@mst.edu
Get access

Abstract

This paper critically evaluates methods used to synthesize boride compounds with emphasis on diborides of the early transition metals. The earliest reports of the synthesis of boride ceramics used impure elemental powders to produce multiphase reaction products; phase-pure borides were only synthesized after processes were established to purify elemental boron. Carbothermal reduction of the corresponding transition metal oxides emerged as a viable production route and continues to be the primary method for the synthesis of commercial transition metal diboride powders. Even though reaction-based processes and chemical synthesis methods are mainly used for research studies, they are powerful tools for producing diborides because they provide the ability to tailor purity and particle size. The choice of synthesis method requires balancing factors that include cost, purity, and particle size with the performance needed in expected applications.

Type
Focus Section: Reinventing Boron Chemistry and Materials for the 21st Century
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Unless otherwise noted, melting temperatures are from Alloy Phase Diagrams: ASM Handbook, Vol. 3 (ASM International, Materials Park, OH, 1992).Google Scholar
All data on space groups were taken from the PDF-2 Database (International Centre for Diffraction Data, Newtown Square, PA).Google Scholar
Madtha, S., Lee, C., and Ravi Chandran, K.S.: Physical and mechanical properties of nanostructured titanium boride (TiB) ceramic. J. Am. Ceram. Soc. 91, 1319 (2008).CrossRefGoogle Scholar
Sun, L., Gao, Y., Xiao, B., Li, Y., and Wang, G.: Anisotropic elastic and thermal properties of titanium borides by first principles calculations. J. Alloys Compd. 579, 457 (2013).CrossRefGoogle Scholar
Panda, K.B. and Ravi Chandran, K.S.: First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. Acta Mater. 54, 1641 (2006).CrossRefGoogle Scholar
Chamberlain, A.L., Fahrenholtz, W.G., Hilmas, G.E., and Ellerby, D.T.: High strength ZrB2-based ceramics. J. Am. Ceram. Soc. 87, 1170 (2004).CrossRefGoogle Scholar
Okamoto, N.L., Kusakari, M., Tanaka, K., Inui, H., and Otani, S.: Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2 . Acta Mater. 58, 76 (2010).CrossRefGoogle Scholar
Rogl, P. and Potter, P.E.: A critical review and thermodynamic calculation of the binary system: Hafnium–boron. CALPHAD 12, 207 (1988).CrossRefGoogle Scholar
Rudy, E.: Ternary Phase Equilibria in Transition Metal–Boron–Carbon–Silicon Systems: Part V. Compendium of Phase Diagram Data. Technical Report Number AFML-TR-65-2 (Air Force Materials Laboratory, Wright-Patterson Air Force Base, May 1969).Google Scholar
Sairam, K., Sonber, J.K., Murthy, T.S.R.Ch., Subramanian, C., Fortedar, R.K., and Hubi, R.C.: Reaction spark plasma sintering of niobium diboride. Int. J. Refract. Met. Hard Mater. 43, 259 (2014).CrossRefGoogle Scholar
Zhang, M., Wang, H., Wang, H., Cui, T., and Ma, Y.: Structural modifications and mechanical properties of molybdenum borides from first principles. J. Phys. Chem. C 114, 6722 (2010).CrossRefGoogle Scholar
Chen, H-H., Bi, Y., Cheng, Y., Ji, G., and Cai, L.: Elastic stability and electronic structure of tantalum boride investigated via first-principles density functional calculations. J. Phys. Chem. Solids 73, 1197 (2012).CrossRefGoogle Scholar
Zhang, X., Hilmas, G.E., and Fahrenholtz, W.G.: Synthesis, densification, and mechanical properties of TaB2 . Mater. Lett. 62, 4251 (2008).CrossRefGoogle Scholar
Zhao, W.J. and Wang, Y.X.: Structural, mechanical, and electronic properties of TaB2, TaB, IrB2, and IrB: First principles calculations. J. Solid State Chem. 182, 2880 (2009).CrossRefGoogle Scholar
Duschanek, H. and Rogl, P.: Critical assessment and thermodynamic calculation of the binary system boron-tungsten. J. Phase Equilib. 16, 150 (1995).CrossRefGoogle Scholar
Chen, Y., He, D., Qin, J., Kou, Z., Wang, S., and Wang, J.: Ultrahigh-pressure densification of nanocrystalline WB ceramics. J. Mater. Res. 25, 637 (2010).CrossRefGoogle Scholar
Zhao, E., Meng, J., Ma, Y., and Wu, Z.: Phase stability and mechanical properties of tungsten borides from first principles calculations. Phys. Chem. Chem. Phys. 12, 13158 (2010).CrossRefGoogle ScholarPubMed
Guo, H., Li, Z., Zhang, J., Niu, H., Gao, F., Ewing, R.E., and Lian, J.: Origin of the rigidity in tetragonal MB (M = Cr, Mo, and W) and softening of defective WB: First principles investigations. Comput. Mater. Sci. 53, 460 (2012).Google Scholar
Qin, J., He, D., Wang, J., Fang, L., Li, Y., Hu, J., Kou, Z., and Bi, Y.: Is rhenium diboride a superhard material? Adv. Mater. 20, 4780 (2008).CrossRefGoogle Scholar
Hebbache, M., Suparevic, L., and Zivkovic, D.: A new superhard material: Osmium diboride OsB2 . Solid State Commun. 139, 227 (2006).CrossRefGoogle Scholar
Chung, H-Y., Yang, Y-M., Tolbert, S.H., and Kaner, R.B.: Anisotropic mechanical properties of ultra-incompressible hard osmium diboride. J. Mater. Res. 23, 1797 (2008).CrossRefGoogle Scholar
Ivanovskii, A.L.: Mechanical, and electronic properties of diborides of transition 3d–5d metals from first principles: Toward search of novel ultra-incompressible and superhard materials. Progr. Mater. Sci. 57, 184 (2012).CrossRefGoogle Scholar
Zhou, Y., Wang, J., Li, Z., Sun, X., and Wang, J.: First-principles investigation on anisotropic chemical bonding and elastic properties of transition metal diborides TMB2 (TM = Zr, Hf, Nb, Ta, and Y). In Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, Fahrenholtz, W.G., Wuchina, E.J., Lee, W.E., and Zhou, Y. eds.; Wiley: New York, 2014; pp. 6082.CrossRefGoogle Scholar
Ivanovskii, A.L., Shein, I.R., and Medvedeva, N.I.: Non-stoichiometric s-, p-, and d-metal diborides: Synthesis, properties, and simulation. Russ. Chem. Rev. 77, 467 (2008).CrossRefGoogle Scholar
Vajeeston, P., Ravindran, P., Ravi, C., and Asokamani, R.: Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides. Phys. Rev. B: Condens. Matter Mater. Phys. 63, 045115-1 (2001).CrossRefGoogle Scholar
Harrington, G., Hilmas, G.E., and Fahrenholtz, W.G.: Effect of carbon on the thermal and electrical transport properties of zirconium diboride. J. Eur. Ceram. Soc. 35, 887 (2015).CrossRefGoogle Scholar
Guo, S., Nishimura, T., and Kagawa, Y.: Preparation of zirconium diboride ceramics by reactive spark plasma sintering of zirconium hydride-boron powders. Scr. Mater. 65, 1018 (2001).CrossRefGoogle Scholar
Lonergan, J.M., Fahrenholtz, W.G., and Hilmas, G.E.: Zirconium diboride with high thermal conductivity. J. Am. Ceram. Soc. 97, 1689 (2014).CrossRefGoogle Scholar
Zhang, L., Pejaković, D.A., Marschall, J., and Gasch, M.: Thermal and electrical transport properties of spark plasma-sintered HfB2 and ZrB2 ceramics. J. Am. Ceram. Soc. 94, 2562 (2011).CrossRefGoogle Scholar
Andrievski, R.A.: Superhard materials based on nanostructured high-melting point compounds: Achievements and perspectives. Int. J. Refract. Met. Hard Mater. 19, 447 (2001).CrossRefGoogle Scholar
Basu, B., Raju, G.B., and Suri, A.K.: Processing and properties of monolithic TiB2-based materials. Int. Mater. Rev. 51, 352 (2006).CrossRefGoogle Scholar
Zhang, X., Luo, X., Han, J., Li, J., and Han, W.: Electronic structure, elasticity, and hardness of diborides of zirconium and hafnium: First principles calculations. Comput. Mater. Sci. 4, 411 (2008).CrossRefGoogle Scholar
Lawson, J.W., Bauschlicher, C.W. Jr., and Daw, M.S.: Ab-initio computations of electronic, mechanical, and thermal properties of ZrB2 and HfB2 . J. Am. Ceram. Soc. 94, 3494 (2011).CrossRefGoogle Scholar
Guo, S.Q.: Densification of ZrB2-based composites and their mechanical and physical properties: A review. J. Eur. Ceram. Soc. 29, 995 (2009).CrossRefGoogle Scholar
Wuchina, E., Opeka, M., Causey, S., Buesking, K., Spain, J., Cull, A., Routbort, J., and Guitierrez-Mora, F.: Designing of ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfC x , HfN x , and αHf(N). J. Mater. Sci. 39, 5939 (2004).CrossRefGoogle Scholar
Kolodziej, P., Salute, J., and Keese, D.L.: First Flight Demonstration of a Sharp Ultra-High Temperature Ceramic Nosetip. NASA Technical Report TM-112215 (December 1997).Google Scholar
Courtright, E.L., Graham, H.C., Katz, A.P., and Kerans, R.J.: Ultra-High Temperature Assessment Study–Ceramic Matrix Composites. Final Report WL-TR-91-4061 (Wright Laboratory Materials Directorate, Wright Patterson Air Force Base, Dayton, OH, September 1992).Google Scholar
Van Wie, D.M., Drewry, D.G. Jr., King, D.E., and Hudson, C.M.: The hypersonic environment: Required operating conditions and design challenges. J. Mater. Sci. 39, 5915 (2004).CrossRefGoogle Scholar
Jackson, T.A., Eklund, D.R., and Fink, A.J.: High speed propulsion: Performance advantage of advanced materials. J. Mater. Sci. 39, 5905 (2004).CrossRefGoogle Scholar
Takagi, K-I.: Development and application of high strength ternary boride base cermets. J. Solid State Chem. 179, 2809 (2006).CrossRefGoogle Scholar
Yuan, B., Zhang, G-J., Kan, Y-M., and Wang, P-L.: Reactive synthesis and mechanical properties of Mo2NiB2 based hard alloy. Int. J. Refract. Met. Hard Mater. 28, 291 (2010).CrossRefGoogle Scholar
Raju, G.B. and Basu, B.: Development of high temperature TiB2-based ceramics. Key Eng. Mater. 395, 894 (2009).Google Scholar
Golla, B.R., Bhandari, T., Mukopadhyay, A., and Basu, B.: Titanium diboride. In Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, Fahrenholtz, W.G., Wuchina, E., Lee, W.E., and Zhou, Y. eds.; Wiley-Blackwell: New York, 2015; pp. 316360.Google Scholar
Suri, A.K., Krishnamurthy, N., and Batra, I.S.: Materials issues in fusion reactors. In Journal of Physics: Conference Series, 208, Paper Number 012001, 2010.Google Scholar
Jackson, H.F., Jayaseelan, D.D., Lee, W.E., Reese, M.J., Inam, F., Manara, D., Casoni, C.P., De Bruycker, F., and Boboridis, K.: Laser melting of spark plasma-sinered zirconium carbide: Thermophysical properties of a generation IV very high-temperature reactor material. Int. J. Appl. Ceram. Technol. 7, 316 (2010).CrossRefGoogle Scholar
She, J., Zhan, Y., Pang, M., Li, C., and Yang, W.: In-situ synthesized (ZrB2 + ZrC) hybrid short fibers reinforced Zr matrix composites for nuclear applications. Int. J. Refract. Met. Hard Mater. 29, 401 (2011).CrossRefGoogle Scholar
Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, W., and Talmy, I.: UHTCs: Ultra-high temperature ceramic materials for extreme environment application. Interface, 16, 30 (2007).Google Scholar
Opeka, M.M., Talmy, I.G., and Zaykoski, J.A.: Oxidation-based materials selection for 2000 °C+ hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 39, 5887 (2004).CrossRefGoogle Scholar
Squire, T.H. and Marschall, J.: Material property requirements for analysis and design of UHTC components in hypersonic applications. J. Eur. Ceram. Soc. 30, 2239 (2010).CrossRefGoogle Scholar
Gasch, M.J., Ellerby, D.T., and Johnson, S.M.: Ultra-high temperature ceramic composites. In Handbook of Ceramic Composites, Bansal, N.P. ed.; Kluwer Academic Publishers: Boston, 2005; pp. 197224.CrossRefGoogle Scholar
Telle, R., Sigl, L.S., and Takagi, K.: Boride-based hard materials. In Handbook of Ceramic Hard Materials, Riedel, R. ed.; Wiley-VCH: Weinheim, Germany, 2000; pp. 802945.CrossRefGoogle Scholar
Mayrhofer, P.H., Mitterer, C., Hultman, L., and Clemens, H.: Microstructural design of hard coatings. Prog. Mater. Sci. 51, 1032 (2006).CrossRefGoogle Scholar
Xie, Z., Zhou, T., and Gou, Y.: Synthesis and characterization of zirconium diboride ceramic precursor. Ceram. Int. 41, 6226 (2015).CrossRefGoogle Scholar
Zhang, G-J., Liu, H-T., Wu, W-W., Zou, J., Ni, D-W., Guo, W-M., Liu, J-X., and Wang, X-G.: Reactive processes for diboride-based ultra-high temperature ceramics. In Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, Fahrenholtz, W.G., Wuchina, E., Lee, W.E., and Zhou, Y. eds.; Wiley-Blackwell: New York, 2015; pp. 3359.Google Scholar
Moissan, H.: Nouvelles Reserches sur le Chrome. C. R. Séances 119, 185 (1894).Google Scholar
Moissan, H.: Reserches sur le tungsten. C. R. Séances 123, 13 (1896).Google Scholar
Moissan, H.: Préparation et Properiétès du Titane. C. R. Séances 120, 290 (1895).Google Scholar
Tucker, S.A. and Moody, H.R.: The preparation of a new metal boride. Proc. Chem. Soc., London 17, 129 (1901).Google Scholar
Tucker, S.A. and Moody, H.R.: The preparation of some new metal borides. J. Chem. Soc. 81, 14 (1902).CrossRefGoogle Scholar
Wedekind, E.: Synthese von Boriden im Elektrischen Vakuumofen. Ber. Dtsch. Chem. Ges. 46, 1198 (1913).CrossRefGoogle Scholar
McKenna, P.M.: Tantalum carbide: Its relation to other hard refractory compounds. Ind. Eng. Chem. 28, 767 (1936).CrossRefGoogle Scholar
Agte, C. and Moers, K.: Methoden zur Reindarstellung hochschmelzender carbide, nitride und boride und Beschreibung einiger ihrer Eigenschaften. Zeitschrift für Anorganische und Allgemeine Chemie 198, 233 (1931).CrossRefGoogle Scholar
Coster, D. and Hervey, G.: On the new element hafnium. Nature 111, 185 (1923).CrossRefGoogle Scholar
Kiessling, R.: A method for preparing boron of high purity. Acta Chem. Scand. 2, 707712 (1948).CrossRefGoogle ScholarPubMed
Kiessling, R.: The borides of tantalum. Acta Chem. Scand. 3, 603 (1949).CrossRefGoogle Scholar
Kiessling, R.: The binary system chromium–boron. Acta Chem. Scand. 3, 595 (1949).CrossRefGoogle Scholar
Kiessling, R.: The crystal structures of molybdenum and tungsten borides. Acta Chem. Scand. 1, 893 (1947).CrossRefGoogle Scholar
Kiessling, R.: The binary system zirconium–boron. Acta Chem. Scand. 3, 90 (1949).CrossRefGoogle Scholar
Peshev, P., Bliznakov, G., and Leyarovska, L.: On the preparation of some chromium, molybdenum, and tungsten borides. J. Less-Common Met. 13, 241 (1967).CrossRefGoogle Scholar
Peshev, P. and Bliznakov, G.: On the borothermic preparation of titanium, ziroconium, and hafnium borides. J. Less-Common Met. 14, 23 (1967).CrossRefGoogle Scholar
Peshev, P., Leyarovska, L., and Bliznakov, G.: On the borothermic preparation of some vanadium, niobium, and tantalum borides. J. Less-Common Met. 15, 259 (1968).CrossRefGoogle Scholar
Bliznakov, G. and Peshev, P.: A thermodynamic study of the reactions in the chemical transport of boron. J. Less-Common Met. 47, 61 (1976).CrossRefGoogle Scholar
Kuz'ma, Y.B., Serebryakova, T.I., and Plakhina, A.M.: Polymorphic transformations of W2B5 . Zh. Neorg. Khim. 12, 559 (1968).Google Scholar
Nelson, J.A., Willmore, T.A., and Womeldorph, R.C.: Refractory bodies composed of boron and titanium carbides bonded with metals. J. Electrochem. Soc. 98, 465 (1951).CrossRefGoogle Scholar
Meerson, G.A., Samsonov, G.V., Kotel'nikov, R.B., and Tsitina, N.Y.: Vacuum thermal production of borides of refractory metals and investigation of several boride systems. Sbornik Nauch Trudov Moskov. Univ. Tsvetnykh Metal. I Zolota 25, 209 (1955).Google Scholar
Meyer, R. and Pastor, H.: The borides of titanium and zirconium preparation, properties, and applications. Bull. Soc. Fr. Ceram. 66, 59 (1965).Google Scholar
Thompson, R.: The chemistry of metal borides and related compounds. In Progress in Boron Chemistry, Vol. 2, Brotherson, R.J. and Steinberg, H. eds.; Permangon Press: Oxford, UK, 1970; pp. 173230.Google Scholar
Markovskii, L.Ya. and Verkshina, N.V.: A magnesium thermic method for the preparation of metal borides. Zh. Prikl. Khim. 40, 1824 (1967).Google Scholar
Andrieux, J.L.: Making metallic powders by electrolysis of fused salts. Rev. Metall. 45, 49 (1948).CrossRefGoogle Scholar
Norton, J.T., Blumenthal, H., and Sindeband, S.J.: Structure of diborides of titanium, zirconium, columbium, tantalum and vanadium. Met. Trans. 185, 749 (1949).Google Scholar
Roos, A.: Boron derivatives, metallic borides, and their uses. Chim. Ind. 82, 339 (1959).Google Scholar
Gebhardt, J.J. and Cree, R.F.: Vapor-deposited borides of group IVA metals. J. Am. Ceram. Soc. 48, 262 (1965).CrossRefGoogle Scholar
Valentine, R.H., Jambois, T.F., and Margrave, J.L.: Thermodynamic properties of inorganic substances VII: The high temperature heat content of zirconium diboride. J. Chem. Eng. Data 9, 182 (1964).CrossRefGoogle Scholar
Kalish, D. and Clougherty, E.V.: Densification mechanisms in high-pressure hot-pressing of HfB2 . J. Am. Ceram. Soc. 52, 26 (1969).CrossRefGoogle Scholar
Kalish, D., Clougherty, E.V., and Kreder, K.: Strength, fracture mode, and thermal stress resistance of HfB2 and ZrB2 . J. Am. Ceram. Soc. 52, 30 (1969).CrossRefGoogle Scholar
Rudy, E., Windisch, St., and Chang, Y.A.: Ternary Phase Equilibria in Transition Metal–Boron–Carbon–Silicon Systems: Part I. Related Binary Systems, Volume I. Mo–C System. Technical Report Number AFML-TR-65-2 (Air Force Materials Laboratory, Wright-Patterson Air Force Base, January 1965).Google Scholar
Naslain, R., Etourneau, J., and Hagenmuller, P.: Alkali metal borides. In Boron and Refractory Borides, Markovich, V.I. ed.; Springer-Verlag: Berlin, 1977; pp. 262292.CrossRefGoogle Scholar
Naslain, R., Guette, A., and Hagenmuller, P.: Crystal chemistry of some boron-rich phases. J. Less-Common Met. 47, 1 (1976).CrossRefGoogle Scholar
Etourneau, J., Mercurio, J.P., Naslain, R., and Hagenmuller, P.: Comparative study of the thermal stability of some rare-earth borides. C. R. Seances Acad. Sci., Ser. C 274, 1688 (1972).Google Scholar
Samsonov, G.V. and Nesphor, V.S.: Alloys of rare metals with boron and silicon for some radio- and electrotechnical application. In Redkie Metally I Splavy, Trudy Pervogo Vseoyuz. Soveshchaniya po Splavam Redkikh Metal., Akad. Nauk S.S.S.R., Inst. Met. Im. A.A. Baikova, Moscow, 1957; p. 392.Google Scholar
Rogl, P. and Nowotny, H.: Structural chemistry of ternary metal borides: Rare earth metal-noble metal-boron. Rare Earths Mod. Sci. Technol. 2, 173 (1980).CrossRefGoogle Scholar
Rogl, P. and Nowotny, H.: Structural chemistry of ternary metal borides. J. Less-Common Met. 61, 39 (1978).CrossRefGoogle Scholar
Thomson, R.: Production, fabrication, and uses of borides. In The Physics and Chemistry of Carbides, Nitrides and Borides, Freer, R. ed.; Kluwer Academic Publishers: Dordrecht, 1990; pp. 113120.CrossRefGoogle Scholar
Lundström, T.: Transition metal borides. In Boron and Refractory Borides, Markovich, V.I. ed.; Springer-Verlag: Berlin, 1977; pp. 351376.CrossRefGoogle Scholar
Mroz, C.: Zirconium diboride. Am. Ceram. Soc. Bull. 73, 141 (1994).Google Scholar
Kim, J.J. and McMurtry, C.H.: Titanium diboride powder production for engineered ceramics. Ceram. Eng. Sci. Proc. 6, 1313 (1985).CrossRefGoogle Scholar
Schwarzkopf, P. and Kieffer, R.: Refractory Hard Metals: Borides, Carbides, Nitrides, and Silicides, Ch. 6: Zirconium carbide (The MacMillan Company, New York, 1953).Google Scholar
Harrington, G.J.K., Lonergan, J., Fahrenholtz, W.G., and Hilmas, G.E.: Processing for improved thermal conductivity of zirconium diboride. In 12th International Conference on Ceramic Processing Science (ICCPS-12), Portland, OR, August 4–7, 2013.Google Scholar
Hafnium. In CRC Handbook of Chemistry and Physics, 62nd ed., Weast, R.C. and Astle, M.J., eds. (CRC Press, Inc.: Boca Raton, 1983); p. B-19.Google Scholar
Lonergan, J.M., Fahrenholtz, W.G., and Hilmas, G.E.: Thermal properties of Hf-Doped ZrB2 ceramics. J. Am. Ceram. Soc. 98, 2689 (2015).CrossRefGoogle Scholar
Zhao, H., He, Y., and Jin, Z.Z.: Preparation of zirconium diboride powder. J. Am. Ceram. Soc. 78, 2534 (1995).CrossRefGoogle Scholar
Baik, S. and Becher, P.F.: Effect of oxygen contamination on densification of TiB2 . J. Am. Ceram. Soc. 70, 527 (1987).CrossRefGoogle Scholar
Chamberlain, A.L., Fahrenholtz, W.G., and Hilmas, G.E.: Pressureless sintering of zirconium diboride. J. Am. Ceram. Soc. 89, 450 (2006).CrossRefGoogle Scholar
Zhu, S., Fahrenholtz, W.G., Hilmas, G.E., and Zhang, S.C.: Pressureless sintering of carbon-coated zirconium diboride powders. Mater. Sci. Eng., A 459, 167 (2007).CrossRefGoogle Scholar
Zhang, S.C., Hilmas, G.E., and Fahrenholtz, W.G.: Pressureless densification of zirconium diboride with boron carbide additions. J. Am. Ceram. Soc. 89, 1544 (2006).CrossRefGoogle Scholar
Fahrenholtz, W.G., Hilmas, G.E., Zhang, S.C., and Zhu, S.: Pressureless sintering of zirconium diboride: Particle size and additive effects. J. Am. Ceram. Soc. 91, 1398 (2008).CrossRefGoogle Scholar
van de Goor, G., Sagesser, P., and Berroth, K.: Electrically conductive ceramic composites. Solid State Ionics 101–103, 1163 (1997).CrossRefGoogle Scholar
Li, L.H., Kim, H.E., and Kang, E.S.: Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid. J. Eur. Ceram. Soc. 22, 973 (2002).CrossRefGoogle Scholar
Monteverde, F. and Bellosi, A.: Beneficial effect of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2 . Adv. Eng. Mater. 5(7) 508512 (2003).CrossRefGoogle Scholar
Zhu, S., Fahrenholtz, W.G., Hilmas, G.E., and Zhang, S.C.: Pressureless sintering of zirconium diboride using boron carbide and carbon additions. J. Am. Ceram. Soc. 90, 3660 (2007).CrossRefGoogle Scholar
Sciti, D., Silvestroni, L., Medri, V., and Monteverde, F.: Sintering and densification mechanisms of ultra-high temperature ceramics. In Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, Fahrenholtz, W.G., Wuchina, E.J., Lee, W.E., and Zhou, Y. eds.; Wiley-Blackwell: New York, 2014; pp. 112143.CrossRefGoogle Scholar
Guo, W-M., Yang, Z-G., and Zhang, G-J.: Synthesis of submicrometer HfB2 powder and its densification. Mater. Lett. 83, 52 (2012).CrossRefGoogle Scholar
Wang, X-G., Guo, W-M., and Zhang, G-J.: Pressureless sintering mechanism and microstructure of ZrB2–SiC ceramics doped with boron. Scr. Mater. 61, 177 (2009).CrossRefGoogle Scholar
Ran, S., Van der Biest, O., and Vleugels, J.: ZrB2 powders synthesis by borothermal reduction. J. Am. Ceram. Soc. 93, 1586 (2010).CrossRefGoogle Scholar
Sonber, J.K., Murthy, T.S.R.C., Subramanian, C., Kumar, S., Fotedar, R.K., and Suri, A.K.: Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2 . Int. J. Refract. Met. Hard Mater. 29, 21 (2011).CrossRefGoogle Scholar
Zhang, G.J., Deng, Z.Y., Kondo, N., Yang, J.F., and Ohji, T.: Reactive hot pressing of ZrB2–SiC composites. J. Am. Ceram. Soc. 83, 2330 (2000).CrossRefGoogle Scholar
Zhang, G.J., Ando, M., Yang, J.F., Ohji, T., and Kanzaki, S.: Boron carbide and nitride as reactants for in situ synthesis of boride-containing ceramic composites. J. Eur. Ceram. Soc. 24, 171 (2004).CrossRefGoogle Scholar
Zou, J., Liu, J., Zhang, G-J., Huang, S., Vleugels, J., Van der Biest, O., and Shen, J.Z.: Hexagonal BN-encapsulated ZrB2 particle by nitride boronizing. Acta Mater. 72, 167 (2014).CrossRefGoogle Scholar
Fahrenholtz, W.G.: Reactive processing in ceramic-based systems. Int. J. Appl. Ceram. Technol. 3, 1 (2006).CrossRefGoogle Scholar
Chiang, Y.M., Haggerty, J.S., Messner, R.P., and Demetry, C.: Reaction-based processing methods for ceramic-matrix. Am. Ceram. Soc. Bull. 68, 420 (1989).Google Scholar
Chamberlain, A.L., Fahrenholtz, W.G., and Hilmas, G.E.: Reactive processing of zirconium diboride. J. Eur. Ceram. Soc. 29, 3401 (2009).CrossRefGoogle Scholar
Wu, W-W., Zhang, G-J., and Sakka, Y.: Nanocrystalline ZrB2 powders prepared by mechanical alloying. J. Asian Ceram. Soc. 1, 304 (2013).CrossRefGoogle Scholar
Lee, D., Vlassak, J.J., and Zhao, K.: First-principles theoretical studies and nanocalorimetry experiments on solid-state alloying of Zr–B. Nano Lett. 15, 6553 (2015).CrossRefGoogle ScholarPubMed
Chamberlain, A.L., Fahrenholtz, W.G., and Hilmas, G.E.: Low temperature densification of zirconium diboride ceramics by reactive hot pressing. J. Am. Ceram. Soc. 89, 3638 (2006).CrossRefGoogle Scholar
Hu, C., Zou, J., Huang, Q., Zhang, G., Guo, S., and Sakka, Y.: Synthesis of plate-like ZrB2 grains. J. Am. Ceram. Soc. 95, 85 (2012).CrossRefGoogle Scholar
Jung, H.J., Sohn, Y., Sung, H.G., Hyun, H.S., and Shin, W.G.: Physicochemical properties of ball milled boron particles: Dry versus wet ball milling process. Powder Technol. 269, 548 (2015).CrossRefGoogle Scholar
Fahrenholtz, W.G.: Reactive hot pressing of Al2O3–Ni composites. J. Mater. Sci. 38, 3073 (2003).CrossRefGoogle Scholar
Guo, S., Hu, C., and Kagawa, Y.: Mechanochemical processing of nanocrystalline zirconium diboride powder. J. Am. Ceram. Soc. 94, 3643 (2011).CrossRefGoogle Scholar
Ran, S., Van der Biest, O., and Vleugels, J.: ZrB2–SiC composites prepared by reactive pulsed electric current sintering. J. Euro. Ceram. Soc. 30, 2633 (2010).CrossRefGoogle Scholar
Guo, S., Ping, D.H., and Kagawa, Y.: Synthesis of zirconium diboride platelets from mechanically activated ZrCl4 and B powder mixture. Ceram. Int. 38, 5195 (2012).CrossRefGoogle Scholar
Parkin, I.: Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: Ionic or elemental pathways. Chem. Soc. Rev. 25, 199 (1996).CrossRefGoogle Scholar
Rao, L., Gillan, E.G., and Kanera, R.B.: Rapid synthesis of transition-metal borides by solid-state metathesis. J. Mater. Res. 10, 353 (1995).CrossRefGoogle Scholar
Gillan, E.G. and Kaner, R.B.: Synthesis of refractory ceramics via rapid metathesis reactions between solid-state precursors. Chem. Mater. 8, 333 (1996).CrossRefGoogle Scholar
Licheri, R., Orrù, R., Musa, C.A., and Cao, G.: Combination of SHS and SPS techniques for fabrication of fully dense ZrB2–ZrC–SiC composites. Mater. Lett. 62, 432 (2008).CrossRefGoogle Scholar
Wu, W-W., Wang, Z., Zhang, G-J., Kan, Y-M., and Wang, P-L.: ZrB2 MoSi2 composites toughened by elongated ZrB2 grains via reactive hot pressing. Scr. Mater. 61, 316 (2009).CrossRefGoogle Scholar
Liu, H-T., Wu, W-W., Zou, J., Ni, D-W., Kan, Y-M., and Zhang, G-J.: In situ synthesis of ZrB2–MoSi2 platelet composites: Reactive hot pressing process, microstructure and mechanical properties. Ceram. Int. 38, 4751 (2012).CrossRefGoogle Scholar
Zhao, H.L., Wang, J.L., Zhu, Z.M., Wang, J., and Pan, W.: Mechanical properties and microstructure of in situ synthesized ZrB2–ZrN1−x composites. J. Mater. Sci. 41, 1769 (2006).CrossRefGoogle Scholar
Zhao, H., Wang, J., Zhu, Z., Pan, W., and Wang, J.: In situ synthesis mechanism of ZrB2–ZrN composite. Mater. Sci. Eng., A 452–453, 130 (2007).CrossRefGoogle Scholar
Wu, W-W., Estili, M., Nishimura, T., Zhang, G-J., and Sakka, Y.: Machinable ZrB2–SiC–BN composites fabricated by reactive spark plasma sintering. Mater. Sci. Eng., A 582, 41 (2013).CrossRefGoogle Scholar
Breval, E. and Johnson, W.B.: Microstructure of platelet-reinforced ceramics prepared by the directed reaction of zirconium with boron carbide. J. Am. Ceram. Soc. 75, 2139 (1992).CrossRefGoogle Scholar
Wu, W-W., Zhang, G-J., Kan, Y.M., and Sakka, Y.: Synthesis, microstructure and mechanical properties of reactively sintered ZrB2–SiC–ZrN composites. Ceram. Int. 39, 7273 (2013).CrossRefGoogle Scholar
Qu, Q., Han, J., Han, W., Zhang, X., and Hong, C.: In situ synthesis mechanism and characterization of ZrB2–ZrC–SiC ultra high-temperature ceramics. Mater. Chem. Phys. 110, 216 (2008).CrossRefGoogle Scholar
Zimmermann, J.W., Hilmas, G.E., Fahrenholtz, W.G., Monteverde, F., and Bellosi, A.: Fabrication and properties of reactively hot pressed ZrB2–SiC ceramics. J. Eur. Ceram. Soc. 27, 2729 (2007).CrossRefGoogle Scholar
Rangaraj, L., Divakar, C., and Jayaram, V.: Fabrication and mechanisms of densification of ZrB2-based ultra-high temperature ceramics by reactive hot pressing. J. Eur. Ceram. Soc. 30, 129 (2010).CrossRefGoogle Scholar
Zhao, Y., Wang, L-J., Zhang, G-J., Jiang, W., and Chen, L-D.: Preparation and microstructure of a ZrB2–SiC composite fabricated by the spark plasma sintering-reactive synthesis method. J. Am. Ceram. Soc. 90, 4040 (2007).CrossRefGoogle Scholar
Wu, W.W., Zhang, G.J., Kan, Y.M., and Wang, P.L.: Reactive hot pressing of ZrB2–SiC–ZrC ultra high-temperature ceramics at 1800 °C. J. Am. Ceram. Soc. 89, 2967 (2006).CrossRefGoogle Scholar
Monteverde, F.: Progress in the fabrication of ultra-high-temperature ceramics: In situ synthesis, microstructure and properties of a reactive hot pressed HfB2-SIC. Compos. Sci. Technol. 65, 1869 (2005).CrossRefGoogle Scholar
Wu, W.W., Zhang, G-J., Kan, Y.M., and Wang, P-L.: Reactive hot pressing of ZrB2–SiC–ZrC composites at 1600 °C. J. Am. Ceram. Soc. 91, 2501 (2000).CrossRefGoogle Scholar
Wu, W-W., Zhang, G-J., Kan, Y-M., and Wang, P-L.: Combustion synthesis of ZrB2–SiC composite powders ignited in air. Mater. Lett. 63, 1422 (2009).CrossRefGoogle Scholar
Tsuchida, T. and Yamamoto, S.: Mechanical activation assisted self-propagating high-temperature synthesis of ZrC and ZrB2 in air from Zr/B/C powder mixtures. J. Eur. Ceram. Soc. 24, 45 (2004).CrossRefGoogle Scholar
Tsuchida, T. and Yamamoto, S.: MA-SHS and SPS of ZrB2–ZrC composites. Solid State Ionics 172, 215 (2004).CrossRefGoogle Scholar
Wu, W-W., Xiao, W-L., Estili, M., Zhang, G-J., and Sakka, Y.: Microstructure and mechanical properties of ZrB2–SiC–BN composites fabricated by reactive hot pressing and reactive spark plasma sintering. Scr. Mater. 68, 889 (2013).CrossRefGoogle Scholar
Zou, J., Huang, S.G., Vanmeensel, K., Zhang, G.J., Vleugels, J., and Van der Biest, O.: Spark plasma sintering of superhard B4C–ZrB2 ceramics by carbide boronizing. J. Am. Ceram. Soc. 96, 1055 (2013).CrossRefGoogle Scholar
Zou, J., Liu, J., Zhao, J., Zhang, G-J., Huang, S., Qian, B., Vleugels, J., Van der Biest, O., and Shen, J.Z.: A top-down approach to densify ZrB2–SiC–BN composites with deeper homogeneity and improved reliability. Chem. Eng. J. 249, 93 (2014).CrossRefGoogle Scholar
Wang, D., Ran, S., Shen, L., Sun, H., and Huang, Q.: Fast synthesis of B4C–TiB2 composite powders by pulsed electric current heating TiC–B mixture. J. Eur. Ceram. Soc. 35, 1107 (2015).CrossRefGoogle Scholar
Vallauri, D., Atías Adrian, I.C., and Chrysanthou, A.: TiC–TiB2 composites: A review of phase relationships, processing and properties. J. Eur. Ceram. Soc. 28, 1697 (2008).CrossRefGoogle Scholar
Welham, N.J.: Formation of nanometric TiB2 from TiO2 . J. Am. Ceram. Soc. 83, 1290 (2000).CrossRefGoogle Scholar
Setoudeh, N. and Welham, N.J.: Formation of zirconium diboride by room temperature mechanochemical reaction between ZrO2, B2O3 and Mg. J. Alloys Compd. 420, 225 (2006).CrossRefGoogle Scholar
Ricceri, R. and Matteazzi, P.: A fast and low-cost room temperature process for TiB2 formation by mechanosynthesis. Mater. Sci. Eng., A 379, 341 (2004).CrossRefGoogle Scholar
Segal, D.L.: Chemical routes for the preparation of powders. Phys. Chem. Carbides, Nitrides Borides 185, 3 (1990).CrossRefGoogle Scholar
Blum, Y.D. and Kleebe, H-J.: Chemical reactivities of hafnium and its derived boride, carbide and nitride compounds at relatively mild temperature. J. Mater. Sci. 39, 6023 (2004).CrossRefGoogle Scholar
Hoekstra, H.R. and Katz, J.J.: The preparation and properties of the group IV-B metal borohydrides. J. Am. Chem. Soc. 71, 2488 (1949).CrossRefGoogle Scholar
Reid, W.E., Bish, J.M., and Brenner, A.: Electrodeposition of metals from organic solutions. III. Preparation and electrolysis of titanium and zirconium compounds in non-aqueous media. J. Electrochem. Soc. 104, 21 (1957).CrossRefGoogle Scholar
Gallagher, M.K., Rhine, W.E., and Bowen, H.K.: Low-temperature route to high-purity titanium, zirconium and hafnium diboride powders and films. In Ultrastructure Processing of Advanced Ceramics, Mackenzie, J.D. and Ulrich, D.R. eds.; Wiley Interscience: New York, 1988; pp. 901906.Google Scholar
Chen, L., Gu, Y., Yang, Z., and Qian, Y.: Preparation and some properties of nanocrystalline ZrB2 powder. Scr. Mater. 50, 959 (2004).CrossRefGoogle Scholar
Chen, L., Gu, Y., Shi, L., Yang, Z., Ma, J., and Qian, Y.: Synthesis and oxidation of nanocrystalline HfB2 . J. Alloys Compd. 368, 353 (2004).CrossRefGoogle Scholar
Yan, Y., Huang, Z., Dong, S., and Jiang, D.: New route to synthesize ultra-fine zirconium diboride powders using inorganic–organic hybrid precursors. J. Am. Ceram. Soc. 89, 3585 (2006).CrossRefGoogle Scholar
Yan, Y.J., Huang, Z.R., Dong, S.M., and Jiang, D.L.: Carbothermal preparation of ultra-fine TiB2 powders using solution-derived precursors via sol-gel method. Key Eng. Mater. 336–338, 944 (2007).CrossRefGoogle Scholar
Venugopal, S., Paul, A., Vaidhyanathan, B., Binner, J.G.P., Boakye, E.E., Keller, K., Mogilevsky, P., Katz, A., and Brown, P.M.: Sol–gel synthesis and formation mechanism of ultra-high temperature ceramic: HfB2 . J. Am. Ceram. Soc. 97, 92 (2014).CrossRefGoogle Scholar
Venugopal, S., Jayaseelan, D.D., Paul, A., Vaidhyanathan, B., Binner, J.G.P., and Brown, P.M.: Screw dislocation assisted spontaneous growth of HfB2 tubes and rods. J. Am. Ceram. Soc. 98, 2060 (2015).CrossRefGoogle Scholar
Venugopal, S., Paul, A., Vaidhyanathan, B., Binner, J.G.P., Heaton, A., and Brown, P.M.: Synthesis and spark plasma sintering of sub-micron HfB2: Effect of various carbon sources. J. Eur. Ceram. Soc. 34, 1471 (2014).CrossRefGoogle Scholar
Cao, Y., Zhang, H., Li, F., Lu, L., and Zhang, S.: Preparation and characterization of ultrafine ZrB2–SiC composite powders by a combined sol–gel and microwave boro/carbothermal reduction method. Ceram. Int. 41, 7823 (2015).CrossRefGoogle Scholar
Xie, Y., Sanders, T.H., and Speyer, R.F.: Solution-based synthesis of submicrometer ZrB2 and ZrB2–TaB2 . J. Am. Ceram. Soc. 91, 1469 (2008).CrossRefGoogle Scholar
Hu, D.L., Zheng, Q., Gu, H., Ni, D.W., and Zhang, G.J.: Role of WC additive on reaction, solid-solution and densification in HfB2–SiC ceramics. J. Eur. Ceram. Soc. 34, 611 (2014).CrossRefGoogle Scholar
Zhang, X.H., Hu, P., Han, J.C., Xu, L., and Meng, S.H.: The addition of lanthanum hexaboride to zirconium diboride for improved oxidation resistance. Scr. Mater. 57, 1036 (2007).CrossRefGoogle Scholar
Levine, S.R. and Opila, E.J.: Tantalum addition to zirconium diboride for improved oxidation resistance. Nasa/TM-2003-212483 (2003).Google Scholar
Monteverde, F.: Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering. J. Alloys Compd. 428, 197 (2007).CrossRefGoogle Scholar
Wang, Y., Luo, L., Sun, J., and An, L.: ZrB2–SiC(Al) ceramics with high resistance to oxidation at 1500 °C. Corros. Sci. 74, 154 (2013).CrossRefGoogle Scholar
Han, J., Hu, P., Zhang, X., Meng, S., and Han, W.: Oxidation-resistant ZrB2–SiC composites at 2200 °C. Compos. Sci. Technol. 68, 799 (2008).CrossRefGoogle Scholar
Williams, P.A., Sakidja, R., Perepezko, J.H., and Ritt, P.: Oxidation of ZrB2–SiC ultra-high temperature composites over a wide range of SiC content. J. Eur. Ceram. Soc. 32, 3875 (2012).CrossRefGoogle Scholar
Fahrenholtz, W.G. and Hilmas, G.E.: Oxidation of ultra-high temperature transition metal diboride ceramics. Int. Mater. Rev. 57, 61 (2012).CrossRefGoogle Scholar
Ni, D-W., Zhang, G-J., Kan, Y-M., and Wang, P-L.: Synthesis of monodispersed fine hafnium diboride powders using carbo/borothermal reduction of hafnium dioxide. J. Am. Ceram. Soc. 91, 2709 (2008).CrossRefGoogle Scholar
Opila, E. and Halbig, M.: Oxidation of ZrB2–SiC. Cer. Eng. Sci. Proc. 22, 221 (2008).CrossRefGoogle Scholar
Zhao, B., Zhang, Y., Li, J., Yang, B., Wang, T., Hu, Y., Sun, D., Li, R., Yin, S., Feng, Z., and Sato, T.: Morphology and mechanism study for the synthesis of ZrB2–SiC powders by different methods. J. Solid State Chem. 207, 1 (2013).CrossRefGoogle Scholar
Avilés, M.A., Córdoba, J.M., Sayagués, M.J., Alcalá, M.D., and Gotor, F.J.: Mechanosynthesis of Hf1−x Zr x B2 solid solution and Hf1−x Zr x B2/SiC composite powders. J. Am. Ceram. Soc. 93, 696 (2010).CrossRefGoogle Scholar
McClane, D.L., Fahrenholtz, W.G., and Hilmas, G.E.: Thermal properties of (Zr, TM)B2 solid solutions with TM = Ta, Mo, Re, V and Cr. J. Am. Ceram. Soc. 98, 637 (2015).CrossRefGoogle Scholar
McClane, D.L., Fahrenholtz, W.G., and Hilmas, G.E.: Thermal properties of (Zr, TM)B2 solid solutions with TM = Hf, Nb, W, Ti and Y. J. Am. Ceram. Soc. 97, 1552 (2014).CrossRefGoogle Scholar
Post, B., Glaser, F.W., and Moskowitz, D.: Transition metal diborides. Acta Metall. 2, 20 (1954).CrossRefGoogle Scholar
Otani, S., Aizawa, T., and Kieda, N.: Solid solution ranges of zirconium diboride with other refractory diborides: HfB2, TiB2, TaB2, NbB2, VB2 and CrB2 . J. Alloys Compd. 475, 273 (2009).CrossRefGoogle Scholar
Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A.: Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 90, 1347 (2007).CrossRefGoogle Scholar
Jiang, Y., Li, R., Zhang, Y., Zhao, B., Li, J., and Feng, Z.: Tungsten doped ZrB2 powder synthesized synergistically by co-precipitation and solid-state reaction methods. Procedia Eng. 27, 1679 (2012).CrossRefGoogle Scholar
Talmy, I.G., Zaykoski, J.A., and Opeka, M.M.: High-temperature chemistry and oxidation of ZrB2 ceramics containing SiC, Si3N4, Ta5Si3 and TaSi2 . J. Am. Ceram. Soc. 91, 2250 (2008).CrossRefGoogle Scholar
Sciti, D., Medri, V., and Silvestroni, L.: Oxidation behaviour of HfB2–15 vol% TaSi2 at low, intermediate and high temperatures. Scr. Mater. 63, 601 (2010).CrossRefGoogle Scholar
Zhang, S.C., Hilmas, G.E., and Fahrenholtz, W.G.: Improved oxidation resistance of zirconium diboride by tungsten carbide additions. J. Am. Ceram. Soc. 91, 3530 (2008).CrossRefGoogle Scholar
Zhang, S.C., Hilmas, G.E., and Fahrenholtz, W.G.: Oxidation of zirconium diboride with tungsten carbide additions. J. Am. Ceram. Soc. 94, 1198 (2011).CrossRefGoogle Scholar
He, R., Zhang, X., Han, W., Hu, P., and Hong, C.: Effects of solids loading on microstructure and mechanical properties of HfB2–20 vol% MoSi2 ultra high temperature ceramic composites through aqueous gelcasting route. Mater. Des. 47, 35 (2013).CrossRefGoogle Scholar