Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T23:03:37.275Z Has data issue: false hasContentIssue false

Geochemistry and Nd isotope signature of the Collserola Range Palaeozoic succesion (NE Iberia): Gondwana heritage and pre-Mesozoic geodynamic evolution

Published online by Cambridge University Press:  23 November 2015

MIQUEL VILÀ*
Affiliation:
Institut Cartogràfic i Geològic de Catalunya, Parc de Montjuïc, E-08038 Barcelona, Spain
CHRISTIAN PIN
Affiliation:
Laboratoire de Géologie, UMR 6524 CNRS & Université Blaise Pascal, 5 rue Kessler, F-63038 Clermont-Ferrand cedex, France
*
Author for correspondence: vilaplanella@gmail.com

Abstract

The Collserola Range includes a representative stratigraphic succession of the Palaeozoic of the central part of the Catalan Coastal Ranges, ranging from Cambro-Ordovician to Carboniferous times. In this paper we present an up-to-date review of the stratigraphy and structure of the Palaeozoic of the Collserola Range, and provide geochemical and Sm–Nd isotope data to constrain the pre-Mesozoic crustal evolution of this sector of the Variscan Belt. Geochemical compositions indicate that the Palaeozoic siliciclastic rocks of the Collserola Range were fed by a relatively mature heterogeneous source of sediment, comprising quartz-rich sediments to intermediate igneous rocks. The siliciclastic rocks of the Collserola Range show great geochemical affinity with the turbidites of passive margins. The Sm–Nd signature of the siliciclastic rocks is compatible with those of the Palaeozoic and late Proterozoic fine-grained siliciclastic rocks of the neighbouring terrains of SW Europe. There is a small decrease of the εNdT with decreasing age of sedimentation from the Cambro-Ordovician to the Carboniferous, suggesting an increase of the amount of more ‘juvenile’ material. The presence of small volumes of alkaline basaltic rocks provides evidence for the input of juvenile material in the early Palaeozoic basin and suggests that an extensional tectonic regime prevailed during the Cambro-Ordovician sedimentation. From a geodynamic point of view, the overall analysis of the data implies that the Palaeozoic rocks of the Catalan Coastal Ranges were part of the Northern Gondwana passive margin before the closure of the Rheic Ocean and the subsequent Variscan Orogeny.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ague, J. J. 1991. Evidence for major mass transfer and volume strain during regional metamorphism of pelites. Geology 19, 855–8.Google Scholar
Alías, G., Aulinas, M. & Tubau, X. 2008. Petrologic and geochemical characterization of metabasites from Collserola range (Barcelona). Geotemas X, VIII Congreso Geológico de Espanya, 14–18 July, Las Palmas de Gran Canaria.Google Scholar
Almera, J. 1900. Mapa geológico topográfico de la Provincia de Barcelona. Región primera o de contornos de la capital. Scale 1:40000. Diputación de Barcelona.Google Scholar
Bauluz, B., Mayayo, M. J., Fernandez-Nieto, C. & Gonzalez-López, J. M. 2000. Geochemistry of Precambrian and Palaeozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area, weathering, sorting, provenance, and tectonic setting. Chemical Geology 168, 135–50.Google Scholar
Bhatia, M. R. & Crook, K. A. W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92, 181–93.Google Scholar
Castiñeiras, P, Navidad, M., Liesa, M., Carreras, J. & Casas, J. M. 2008. U-Pb zircón ages (SHRIMP) for Cadomian and Early Ordovician magmatism in the eastern Pyrenees: new insights into the pre-Variscan evolution of the northern Gondwana margin. Tectonophysics 461, 228–39.Google Scholar
CGMW 2009. Geological Map of the World at 1:25M, 3rd edition. Paris: Commission for the Geological Map of the World.Google Scholar
Condie, K. C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology 104, 137.Google Scholar
DePaolo, D. J. 1981. Neodymium isotopes in the Colorado Front Range and crust mantle evolution in the Proterozoic. Nature 291, 193–6.CrossRefGoogle Scholar
Enrique, P. 1990. The Hercynian intrusive rocks of the Catalonian Coastal Ranges (NE Spain). Acta Geologica Hispanica 25, 3964.Google Scholar
Fernández-Suárez, J., Gutierrez-Alonso, G., Johnston, S. T., Jeffries, T. E., Pastor-Galán, D., Jenner, G. A. & Murphy, J. B. 2011. Iberian late-Variscan granitoids: some considerations on crustal sources and the significance of ‘mantle extraction ages’. Lithos 123, 121–32.CrossRefGoogle Scholar
García-López, S., Julivert, M., Soldevila, J., Truyols-Massoni, M. & Zamarreño, I. 1990. Biostratigrafía y facies de la sucesión carbonatada del Silúrico superior y Devónico inferior de Santa Creu d’Olorda (Cadenas Costeras Catalanas, NE de España). Acta Geologica Hispanica 25, 141–68.Google Scholar
Gaspar-Escribano, J. M., Garcia-Castellanos, D., Roca, E. & Cloetingh, S. 2004. Cenozoic vertical motions of the Catalan Coastal Ranges (NE Spain): the role of tectonics, isostasy, and surface transport. Tectonics 23, doi:10.1029 /2003TC001511.Google Scholar
Gil Ibarguchi, J. I. & Julivert, M. 1988. Petrología de la aureola metamórfica de la granodiorita de Barcelona en la Sierra de Collserola. Estudios Geológicos 44, 353–74.Google Scholar
Gil Ibarguchi, J. I., Navidad, M. & Ortega, L. A. 1990. Ordovician and Silurian igneous rocks and orthognesisses in the Catalonian Coastal Ranges. Acta Geologica Hispanica 25, 23–9.Google Scholar
Gradstein, F. M., Ogg, J. G. & Smith, A. G. 2004. A Geologic Time Scale 2004. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
IGC 2009–2012. Mapa geològic de les zones urbanes 1:5000, fulls 285–124, 285–125, 286–125, 286–126, 287–126, 288–124, 288–125, 289–124, 289–125. Institut Geològic de Catalunya. http://www.igc.cat/web/ca/igc_cataleg.html (accessed 11 October 2015).Google Scholar
Julivert, M. & Durán, H. 1990 a. Palaeozoic stratigraphy of the Central and Northern part of the Catalonian Coastal Ranges (NE Spain). Acta Geologica Hispanica 25, 312.Google Scholar
Julivert, M. & Durán, H. 1990 b. The Hercynian structure of the Catalonian Coastal Ranges (NE Spain). Acta Geologica Hispanica 25, 1321.Google Scholar
Julivert, M., Duran, H., Rickards, R. B. & Chapman, A. J. 1985. Siluro-Devonian graptolite stratigraphy of the Catalan Coastal Ranges. Acta Geologica Hispanica 20, 199207.Google Scholar
Laumonier, B. 1996. Cambro-Ordovicien. In Synthèse Géologique et Géophysique des Pyrénées (eds Barnolas, A., Chiron, J.C.), pp. 157209. Bureau de Recherches Géologiques et Minières - Instituto Tecnológico y Geominero de España (BRGM-ITGE).Google Scholar
Le Fèvre, B. & Pin, C. 2002. Determination of Zr, Hf, Th and U by isotope dilution and inductively coupled plasma-quadrupole mass spectrometry after concomitant separation using extraction chromatography. Geostandards and Geoanalytical Research 26, 161–70.Google Scholar
Le Maitre, R. W. 1976. The chemical variability of some common igneous rocks. Journal of Petrology 17, 589–98.CrossRefGoogle Scholar
López-Guijarro, R., Armendariz, M., Quesada, C., Fernández-Suárez, J., Murphy, J. B., Pin, C. & Bellido, F. 2008. Ediacaran-Palaeozoic tectonic evolution of the Ossa Morena and Central Iberian zones (SW Iberia) as revealed by Sm-Nd isotope systematics. Tectonophysics 461, 202–14.Google Scholar
Martínez, F. J., Iriondo, A., Dietsch, C., Aleinikoff, J. N., Peucat, J. J., Cirès, J., Reche, J. & Capdevila, R. 2011. U-Pb SHRIMP-RG zircon ages and Nd signature of lower Palaeozoic rifting-reated magmatism in the Variscan basement of the Eastern Pyrenees. Lithos 127, 1023.CrossRefGoogle Scholar
Martínez Catalán, J. R. 2011. Are the oroclines of the Varican belt related to late Variscan strike-slip tectonics? Terra Nova 23, 241–7.CrossRefGoogle Scholar
Matte, P. 2001. The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13, 122–8.CrossRefGoogle Scholar
Mcculloch, M. T. & Wasserburg, G. J. 1978. Sm-Nd and Rb-Sr chronology of continental crust formation. Science 200, 1003–11.Google Scholar
Mclennan, S. M., Taylor, S. R. & Mcculloch, M. T. 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta 54, 2015–50.CrossRefGoogle Scholar
Meléndez, B. & Chauvel, J. 1981. Sur quelques cysroïdées cites par les Drs J. Almera et M. Faura dans l’Ordovicien de Barcelona. Acta Geologica Hispanica 14, 318–21.Google Scholar
Murali, A. V., Parthasarathy, R., Mahadevan, T. M. & Sankar Das, M. 1983. Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments: a case study on Indian zircons. Geochimica et Cosmochimica Acta 47, 2047–52.Google Scholar
Nägler, T. F., Schäfer, H. J. & Gebauer, D. 1995. Evolution of the Western European continental crust: implications from Nd and Pb isotopes in Iberian sediments. Chemical Geology 121, 345–57.Google Scholar
Nance, R. D., Gutiérrez-Alonso, G., Keppie, J. D., Linnemann, U., Murphy, J. B., Quesada, C., Strachan, R. A. & Woodcock, N. H. 2010. Evolution of the Rheic Ocean. Gondwana Research 17, 194222.CrossRefGoogle Scholar
Nance, R. D. & Murphy, J. B. 1994. Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens: example from the Neoproterozoic Avalonian–Cadomian belt. Geology 22, 617–20.2.3.CO;2>CrossRefGoogle Scholar
Navidad, M. & Carreras, J. 1995. Pre-Hercynian magmatism in the Eastern Pyrenees (Cap de Creus and Albera Massifs) and its geodynamical setting. Geologie en Mijnbouw 74, 6577.Google Scholar
Navidad, M., Castiñeiras, P., Casas, J. M., Liesa, M., Suarez, J. F., Barnolas, A., Carreras, J. & Gil-Peña, I. 2010. Geochemical characterization and isotopic age of Caradocian magmatism in the northeastern Iberian Peninsula: insights into the late Ordovician evolution of northern Gondwana margin. Gondwana Research 17, 325–37.CrossRefGoogle Scholar
Nesbitt, H. W. & Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–7.CrossRefGoogle Scholar
Pin, C. & Duthou, J. L. 1990. Sources of Hercynian granitoids from the French Massif Central: inferences from Nd isotopes and consequences for crustal evolution. Chemical Geology 83, 281–96.CrossRefGoogle Scholar
Pin, C., Ortega Cuesta, L. A. & Gil Ibarguchi, J. I. 1992. Mantle-derived early Palaeozoic A-Type metagranitoids from NW Iberian massif: Nd isotopes and trace-element constraints. Bulletin de la Societe Geologique de France 4, 483–94.Google Scholar
Pin, C. & Santos, J. F. 1997. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Analytica Chimica Acta 339, 7989.Google Scholar
Rodríguez-Alonso, M. D., Peinado, M., López-Plaza, M., Franco, P., Carnicero, A. & Gonzalo, J. C. 2004. Neoproterozoic-Cambrian synsedimentary magmatism in the Central Iberian Zone (Spain): geology, petrology and geodynamic significance. International Journal of Earth Sciences 93, 897920.CrossRefGoogle Scholar
Roser, B. P. & Korsch, R. J. 1988. Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology 67, 119–39.CrossRefGoogle Scholar
Rudnick, R. L. & Gao, S. 2003. Composition of the continental crust. In The Crust (ed. Rudnick, R. L.), pp. 164. Oxford: Elsevier-Pergamon, Treatise on Geochemistry, no. 3.Google Scholar
Ryan, K. M. & Williams, D. M. 2007. Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins. Sedimentary Geology 5, 54–6.Google Scholar
Sánchez-García, T., Pereira, M. F., Bellido, F., Chichorro, M., Silva, J. B., Valverde-Vaquero, P., Pin, C.H. & Solá, A.R. 2014. Early Cambrian granitoids of North Gondwana margin in the transition from a convergent setting to intra-continental rifting (Ossa-Morena Zone, SW Iberia. International Journal of Earth Sciences 103, 1203–18.Google Scholar
Santanach, P., Casas, J. M., Gratacós, O., Liesa, M., Muñoz, J. A. & Sàbat, F. 2011. Variscan and Alpine structure of the hills of Barcelona: geology in an urban area. Journal of Iberian Geology 37, 121–36.Google Scholar
Simien, F., Mattauer, M. & Allegre, C. J. 1999. Nd isotopes in the stratigraphical record of the Montagne Noire (French Massif Central): no significant Palaeozoic juvenile inputs, and pre-Hercynian paleogeography. Journal of Geology 107, 8797.Google Scholar
Stampfli, G. M., Horchard, C., Vérard, C., Wilhem, C. & VonRaumer, J. 2013. The formation of Pangea. Tectonophysics 593, 119.Google Scholar
Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M. & Dragusanu, C. 2000. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology 168, 279–81.CrossRefGoogle Scholar
Ugidos, J. M., Valladares, M. I., Recio, C., Rogers, G., Fallick, A. E. & Stephens, W. E. 1997. Provenance of Upper Precambrian-Lower Cambrian shales in the Central Iberian Zone, Spain: evidence from a chemical and isotopic study. Chemical Geology 136, 5570.CrossRefGoogle Scholar
Valverde-Vaquero, P. & Dunning, G. R. 2000. New U-Pb ages for Early Ordovician magmatism in Central Spain. Journal of the Geological Society of London 157, 1526.Google Scholar
Vilà, M., Pin, C., Enrique, P. & Liesa, M. 2005. Telescoping of three distinct magmatic suites in an orogenic setting: generation of the Hercynian igneous rocks of the Albera Massif. Lithos 83, 97127.Google Scholar