Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T19:58:55.928Z Has data issue: false hasContentIssue false

On a suspension of nearly spherical colloidal particles under large-amplitude oscillatory shear flow

Published online by Cambridge University Press:  22 February 2016

Aditya S. Khair*
Affiliation:
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
*
Email address for correspondence: akhair@andrew.cmu.edu

Abstract

The dynamics of a dilute, monodisperse suspension of nearly spherical particles that undergo Brownian rotations in an oscillatory simple shear flow is quantified, as a paradigm for large-amplitude oscillatory shear (LAOS) rheology of complex fluids. We focus on the ‘strongly nonlinear’ regime of LAOS, defined by ${\it\beta}\gg 1$ and ${\it\beta}/{\it\alpha}\gg 1$, where ${\it\beta}$ is a dimensionless shear rate (or Weissenberg number) and ${\it\alpha}$ is a dimensionless oscillation frequency (or Deborah number). We derive an asymptotic solution for the long-time periodic orientation probability density function of the particles. Our analysis reveals that the orientation dynamics consists of ‘core’ regions of rapid oscillation (on the time scale of the inverse of the shear-rate amplitude), separated by comparatively short ‘turning’ regions of slow evolution when the imposed flow vanishes. Uniformly valid approximations to the shear stress and normal stress differences (NSDs) of the suspension are then constructed: the non-Newtonian contribution to the shear stress, first NSD and second NSD, decays as ${\it\beta}^{-3/2}$, ${\it\beta}^{-1}$ and ${\it\beta}^{-1/2}$, respectively, at large ${\it\beta}$. These stress scalings originate from the orientation dynamics at the turning regions. Therefore, it is the occasions when the flow vanishes that dominate the rheology of this paradigmatic complex fluid under LAOS.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aouane, O., Thiébaud, M., Benyoussef, A. & Wagner, C. 2014 Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos. Phys. Rev. E 90, 033011.Google Scholar
Adrian, D. W. & Giacomin, A. J. 1992 The quasiperiodic nature of a polyurethane melt in oscillatory shear. J. Rheol. 36, 12271243.Google Scholar
Bharadwaj, N. A. & Ewoldt, R. H. 2014 The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear. J. Rheol. 58, 891910.Google Scholar
Bird, R. B., Warner, H. R. Jr & Evans, D. C. 1971 Kinetic theory and rheology of dumbbell suspensions with Brownian motion. Adv. Polym. Sci. 8, 190.Google Scholar
Brenner, H. & Condiff, D. W. 1974 Transport mechanics in systems of orientable particles. IV. Convective transport. J. Colloid Interface Sci. 47, 199264.Google Scholar
Ewoldt, R. H., Hosoi, A. E. & McKinley, G. H. 2008 New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52, 14271458.CrossRefGoogle Scholar
Frattini, P. L. & Fuller, G. G. 1986 Rheo-optical studies of the effect of weak Brownian rotations in sheared suspension. J. Fluid Mech. 168, 119150.Google Scholar
Giacomin, A. J., Bird, R. B., Johnson, L. M. & Mix, A. W. 2011 Large-amplitude oscillatory shear flow from the corotational Maxwell model. J. Non-Newtonian Fluid Mech. 166, 10811099.Google Scholar
Goddard, J. D. & Miller, C. 1967 Nonlinear effects in the rheology of dilute suspensions. J. Fluid Mech. 28, 657673.CrossRefGoogle Scholar
Graham, M. D. 1995 Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows. J. Rheol. 39, 697712.Google Scholar
Gurnon, A. K. & Wagner, N. J. 2012 Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles. J. Rheol. 56, 333351.Google Scholar
Hatzikiriakos, S. G. & Dealy, J. M. 1991 Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies. J. Rheol 35, 497523.Google Scholar
Hinch, E. J. 1991 Perturbation Methods. Cambridge University Press.Google Scholar
Hyun, K., Kim, S. H, Ahn, K. H. & Lee, S. J. 2002 Large amplitude oscillatory shear as a way to classify the complex fluids. J. Non-Newtonian Fluid Mech. 107, 5165.Google Scholar
Hyun, K. & Wilhelm, M. 2009 Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer systems. Macromolecules 42, 411422.Google Scholar
Hyun, K., Wilhelm, M., Klein, C. O., Cho, S. K., Nam, J. G., Ahn, K. H., Lee, S. J., Ewoldt, R. H. & McKinley, G. H. 2011 A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Proc. Polym. Sci. 36, 16971753.Google Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Khair, A. S. 2016 Large amplitude oscillatory shear of the Giesekus model. J. Rheol. 60, 257266.Google Scholar
Larson, R. G. 1999 The Structure and Rheology of Complex Fluids. Oxford University Press.Google Scholar
Leahy, B. D., Koch, D. L. & Cohen, I. 2015 The effect of shear flow on the rotational diffusion of a single axisymmetric particle. J. Fluid Mech. 772, 4279.Google Scholar
Leal, L. G. & Hinch, E. J. 1972 The rheology of a suspension of nearly spherical particles subject to Brownian rotations. J. Fluid Mech. 55, 745765.CrossRefGoogle Scholar
Onogi, S., Masuda, T. & Matsumoto, T. 1970 Non-linear behavior of viscoelastic materials. I. Disperse systems of polystyrene solution and carbon black. Trans. Soc. Rheol. 14, 275294.Google Scholar
Pearson, D. S. & Rochefort, W. E. 1982 Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields. J. Polym. Sci. B 20, 8398.Google Scholar
Philippoff, W. 1966 Vibrational measurements with large amplitudes. Trans. Soc. Rheol. 10, 317334.Google Scholar
Rallison, J. M. 1980 Note on the time-dependent deformation of a viscous drop which is almost spherical. J. Fluid Mech. 98, 625633.Google Scholar
Rogers, S. A., Erwin, B. M., Vlassopoulos, D. & Cloitre, M. 2011 A sequence of physical processes determined and quantified in LAOS: application to a yield stress fluid. J. Rheol. 55, 435458.Google Scholar
Rogers, S. A. & Lettinga, M. P. 2012 A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): application to theoretical nonlinear models. J. Rheol. 56, 125.Google Scholar
Russel, W. B. 1978 Bulk stresses due to deformation of the electrical double layer around a charged sphere. J. Fluid Mech. 85, 673683.CrossRefGoogle Scholar
Swan, J. W., Furst, E. M. & Wagner, N. J. 2014 The medium amplitude oscillatory shear of semi-dilute colloidal suspensions. Part I: Linear response and normal stress differences. J. Rheol. 58, 307337.Google Scholar
Vermant, J., Yang, H. & Fuller, G. G. 2001 Rheooptical determination of aspect ratio and polydispersity of nonspherical particles. AIChE J. 47, 790798.Google Scholar
Vlahovska, P. M., Blawzdziewicz, J. & Loewenberg, M. 2002 Nonlinear rheology of a dilute emulsion of surfactant-covered spherical drops in time-dependent flows. J. Fluid Mech. 463, 124.Google Scholar
Wilhelm, M. Fourier-transform rheology. Macromol. Mater. Engng 287, 83105.Google Scholar
Young, Y.-N., Blawzdziewicz, J., Cristini, V. & Goodman, R. H. 2008 Hysteretic and chaotic dynamics of viscous drops in creeping flows with rotation. J. Fluid Mech. 607, 209234.CrossRefGoogle Scholar