Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T10:05:19.846Z Has data issue: false hasContentIssue false

Attenuation and directional spreading of ocean wave spectra in the marginal ice zone

Published online by Cambridge University Press:  09 February 2016

Fabien Montiel*
Affiliation:
Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand
V. A. Squire
Affiliation:
Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand
L. G. Bennetts
Affiliation:
School of Mathematics Sciences, University of Adelaide, Adelaide 5005, Australia
*
Email address for correspondence: fmontiel@maths.otago.ac.nz

Abstract

A theoretical model is used to study wave energy attenuation and directional spreading of ocean wave spectra in the marginal ice zone (MIZ). The MIZ is constructed as an array of tens of thousands of compliant circular ice floes, with randomly selected positions and radii determined by an empirical floe size distribution. Linear potential flow and thin elastic plate theories model the coupled water–ice system. A new method is proposed to solve the time-harmonic multiple scattering problem under a multidirectional incident wave forcing with random phases. It provides a natural framework for tracking the evolution of the directional properties of a wave field through the MIZ. The attenuation and directional spreading are extracted from ensembles of the wave field with respect to realizations of the MIZ and incident forcing randomly generated from prescribed distributions. The averaging procedure is shown to converge rapidly so that only a small number of simulations need to be performed. Far-field approximations are investigated, allowing efficiency improvements with negligible loss of accuracy. A case study is conducted for a particular MIZ configuration. The observed exponential attenuation of wave energy through the MIZ is reproduced by the model, while the directional spread is found to grow linearly with distance. The directional spreading is shown to weaken when the wavelength becomes larger than the maximum floe size.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1970 Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover.Google Scholar
Bennetts, L. G. 2011 Wave attenuation through multiple rows of scatterers with differing periodicities. SIAM J. Appl. Maths 71, 540558.Google Scholar
Bennetts, L. G., Alberello, A., Meylan, M. H., Cavaliere, C., Babanin, A. V. & Toffoli, A. 2015 An idealised experimental model of ocean surface wave transmission by an ice floe. Ocean Model. 96 (1), 8592.CrossRefGoogle Scholar
Bennetts, L. G., Peter, M. A., Squire, V. A. & Meylan, M. H. 2010 A three dimensional model of wave attenuation in the marginal ice zone. J. Geophys. Res. 115, C12043.Google Scholar
Bennetts, L. G. & Squire, V. A. 2009 Wave scattering by multiple rows of circular ice floes. J. Fluid Mech. 639, 213238.Google Scholar
Bennetts, L. G. & Squire, V. A. 2012 a Model sensitivity analysis of scattering-induced attenuation of ice-coupled waves. Ocean Model. 45, 113.Google Scholar
Bennetts, L. G. & Squire, V. A. 2012 b On the calculation of an attenuation coefficient for transects of ice-covered ocean. Proc. R. Soc. Lond. A 468, 136162.Google Scholar
Bennetts, L. G. & Williams, T. D. 2015 Water wave transmission by an array of floating discs. Proc. R. Soc. Lond. A 471 (2173), 20140698.Google Scholar
Brockwell, S. E. & Gordon, I. R. 2001 A comparison of statistical methods for meta-analysis. Stat. Med. 20 (6), 825840.CrossRefGoogle ScholarPubMed
Collins, C. O., Rogers, W. E., Marchenko, A. & Babanin, A. V. 2015 In situ measurements of an energetic wave event in the Arctic marginal ice zone. Geophys. Res. Lett. 42 (6), 18631870.Google Scholar
Doble, M. J. & Bidlot, J.-R. 2013 Wave buoy measurements at the Antarctic sea ice edge compared with an enhanced ECMWF WAM: progress towards global waves-in-ice modelling. Ocean Model. 70, 166173.Google Scholar
Dumont, D., Kohout, A. L. & Bertino, L. 2011 A wave-based model for the marginal ice zone including a floe breaking parameterization. J. Geophys. Res. 116, C04001.Google Scholar
Ishimaru, A. 1978 Wave Propagation and Scattering in Random Media. Academic.Google Scholar
Jefferys, E. R. 1987 Directional seas should be ergodic. Appl. Ocean Res. 9, 186191.Google Scholar
Kagemoto, H. & Yue, D. K. P. 1986 Interactions among multiple three-dimensional bodies in water waves: an exact algebraic method. J. Fluid Mech. 166, 189209.Google Scholar
Kohout, A. L. & Meylan, M. H. 2008 An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone. J. Geophys. Res. 113, C09016.Google Scholar
Kohout, A. L., Williams, M. J. M., Dean, S. M. & Meylan, M. H. 2014 Storm-induced sea-ice breakup and the implications for ice extent. Nature 509 (7502), 604607.CrossRefGoogle ScholarPubMed
Krogstad, H. E. 2005 The directional wave spectrum. In Measuring and Analysing the Directional Spectrum of Ocean Waves (ed. Hauser, D., Kahma, K., Krogstad, H. E., Lehner, S., Monbaliu, J. A. J. & Wyatt, L. R.), pp. 1554. Cost Action 714, EUR 21367, Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C. et al. 2013 Cryosat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 40 (4), 732737.CrossRefGoogle Scholar
Linton, C. M. & Evans, D. V. 1992 The radiation and scattering of surface waves by a vertical circular cylinder in a channel. Phil. Trans. R. Soc. Lond. A 338, 325357.Google Scholar
Liu, A. K., Holt, B. & Vachon, P. W. 1991a Wave propagation in the marginal ice zone: model predictions and comparisons with buoy and synthetic aperture radar data. J. Geophys. Res. 96 (C3), 46054621.CrossRefGoogle Scholar
Liu, A. K. & Mollo-Christensen, E. 1988 Wave propagation in a solid ice pack. J. Phys. Oceanogr. 18 (11), 17021712.Google Scholar
Liu, A. K., Vachon, P. W. & Peng, C. Y. 1991b Observation of wave refraction at an ice edge by synthetic aperture radar. J. Geophys. Res. 96 (C3), 48034808.Google Scholar
Martin, P. A. 2006 Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles, Issue 107 of Encyclopedia of Mathematics and Its Applications, vol. 10. Cambridge University Press.Google Scholar
Masson, D. & Leblond, P. H. 1989 Spectral evolution of wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech. 202, 4381.Google Scholar
Mavrakos, S. A. & Koumoutsakos, P. 1987 Hydrodynamic interaction among vertical axisymmetric bodies restrained in waves. Appl. Ocean Res. 9, 128140.Google Scholar
Meier, W. N., Gallaher, D. & Campbell, G. G. 2013 New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery. Cryo. Disc. 7, 3553.Google Scholar
Mellor, M. 1986 Mechanical behavior of sea ice. In The Geophysics of Sea Ice (ed. Untersteiner, N.), NATO Advanced Study Institute Series, pp. 165281. Springer.Google Scholar
Meylan, M. H., Bennetts, L. G. & Kohout, A. L. 2014 In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone. Geophys. Res. Lett. 41 (14), 50465051.Google Scholar
Meylan, M. H. & Masson, D. 2006 A linear Boltzmann equation to model wave scattering in the marginal ice zone. Ocean Model. 11, 417427.CrossRefGoogle Scholar
Meylan, M. H. & Squire, V. A. 1996 Response of a circular ice floe to ocean waves. J. Geophys. Res. 101, 88698884.Google Scholar
Meylan, M. H., Squire, V. A. & Fox, C. 1997 Toward realism in modeling ocean wave behavior in marginal ice zones. J. Geophys. Res. 102, 2298122991.CrossRefGoogle Scholar
Miles, M. D. & Funke, E. R. 1989 A comparison of methods for synthesis of directional seas. J. Offshore Mech. Arctic Engng 111 (1), 4348.CrossRefGoogle Scholar
Montiel, F.2012 Numerical and experimental analysis of water wave scattering by floating elastic plates. PhD thesis, University of Otago.Google Scholar
Montiel, F., Bennetts, L. G., Squire, V. A., Bonnefoy, F. & Ferrant, P. 2013 Hydroelastic response of floating elastic discs to regular waves. Part 2. Modal analysis. J. Fluid Mech. 723, 629652.CrossRefGoogle Scholar
Montiel, F., Squire, V. A. & Bennetts, L. G. 2015a Evolution of directional wave spectra through finite regular and randomly perturbed arrays of scatterers. SIAM J. Appl. Maths 75, 630651.Google Scholar
Montiel, F., Squire, V. A. & Bennetts, L. G. 2015b Reflection and transmission of ocean wave spectra by a band of randomly distributed ice floes. Ann. Glaciol. 56 (69), 315322.Google Scholar
Mosig, J. E. M., Montiel, F. & Squire, V. A. 2015 Comparison of viscoelastic-type models for ocean wave attenuation in ice-covered seas. J. Geophys. Res. 120 (9), 60726090.Google Scholar
Ochi, M. K. 1998 Ocean Waves: The Stochastic Approach. Cambridge University Press.CrossRefGoogle Scholar
Ohkusu, M. 1974 Hydrodynamic forces on multiple cylinders in waves. In Proceedings of the International Symposium on the Dynamics of Marine Vehicles and Structures in Waves, London, UK (ed. Bishop, R. E. D. & Price, W. G.), pp. 107112.Google Scholar
Peter, M. A. & Meylan, M. H. 2004 Infinite-depth interaction theory for arbitrary floating bodies applied to wave forcing on ice floes. J. Fluid Mech. 500, 145167.CrossRefGoogle Scholar
Peter, M. A. & Meylan, M. H. 2009 Water wave scattering by vast field of bodies. SIAM J. Appl. Maths 70, 15671586.Google Scholar
Peter, M. A., Meylan, M. H. & Chung, H. 2003 Wave scattering by a circular plate in water of finite depth: a closed form solution. In Proceedings of the 13th International Offshore and Polar Engineering Conference, pp. 180185. International Society of Offshore and Polar Engineers.Google Scholar
Robinson, N. J. & Palmer, S. C. 1990 A modal analysis of a rectangular plate floating on an incompressible liquid. J. Sound Vib. 142, 453460.Google Scholar
Rogers, W. E. & Orzech, M. D.2013 Implementation and testing of ice and mud source functions in WAVEWATCH III®. Tech. Rep. National Research Laboratory.Google Scholar
Rothrock, D. A. & Thorndike, A. S. 1984 Measuring the sea ice floe size distribution. J. Geophys. Res. Oceans 89 (C4), 64776486.CrossRefGoogle Scholar
Shen, H. H. & Squire, V. A. 1998 Wave damping in compact pancake ice fields due to interactions between pancakes. Antarct. Res. Ser. 74, 325341.Google Scholar
Skene, D. M., Bennetts, L. G., Meylan, M. H. & Toffoli, A. 2015 Modelling water wave overwash of a thin floating plate. J. Fluid Mech. 777, R3.CrossRefGoogle Scholar
Sommerfeld, A. 1949 Partial Differential Equations in Physics, Pure and Applied Mathematics: A Series of Monographs and Textbooks, vol. 1. Academic.Google Scholar
Squire, V. A. 2007 Of ocean waves and sea-ice revisited. Cold Reg. Sci. Technol. 49, 110133.Google Scholar
Squire, V. A. 2011 Past, present and impendent hydroelastic challenges in the polar and subpolar seas. Phil. Trans. R. Soc. Lond. A 369, 28132831.Google Scholar
Squire, V. A., Dugan, J. P., Wadhams, P., Rottier, P. J. & Liu, A. K. 1995 Of ocean waves and sea ice. Annu. Rev. Fluid Mech. 27, 115168.Google Scholar
Squire, V. A. & Fox, C. 1992 On ice coupled waves: a comparison of data and theory. In Advances in ice technology: Proceedings of the 3rd International Conference on Ice Technology, pp. 269280. Computational Mechanics Publications.Google Scholar
Squire, V. A. & Moore, S. C. 1980 Direct measurement of the attenuation of ocean waves by pack ice. Nature 283, 365368.Google Scholar
Stuart, A. & Ord, K. 1999 Kendall’s Advanced Theory of Statistics, Volume 1: Distribution Theory. Arnold.Google Scholar
Thomson, J. & Rogers, W. E. 2014 Swell and sea in the emerging Arctic Ocean. Geophys. Res. Lett. 41 (9), 31363140.CrossRefGoogle Scholar
Toyota, T., Haas, C. & Tamura, T. 2011 Size distribution and shape properties of relatively small sea-ice floes in the Antarctic marginal ice zone in late winter. Deep-Sea Res. II 58, 11821193.Google Scholar
Toyota, T., Takatsuji, S. & Nakayama, M. 2006 Characteristics of sea ice floe size distribution in the seasonal ice zone. Geophys. Res. Lett. 33 (2), L02616.Google Scholar
Twersky, V. 1952 Multiple scattering of radiation by an arbitrary configuration of parallel cylinders. J. Acoust. Soc. Am. 24, 4246.Google Scholar
Wadhams, P., Squire, V. A., Ewing, J. A. & Pascal, R. W. 1986 The effect of the marginal ice zone on the directional wave spectrum of the ocean. J. Phys. Oceanogr. 16, 358376.Google Scholar
Wadhams, P., Squire, V. A., Goodman, D. J., Cowan, A. M. & Moore, S. C. 1988 The attenuation rates of ocean waves in the marginal ice zone. J. Geophys. Res. 93, 67996818.Google Scholar
Wang, R. & Shen, H. H. 2010 Gravity waves propagating into an ice-covered ocean: a viscoelastic model. J. Geophys. Res. 115 (C6), c06024.Google Scholar
Williams, T. D., Bennetts, L. G., Squire, V. A., Dumont, D. & Bertino, L. 2013 a Wave–ice interactions in the marginal ice zone. Part 1: theoretical foundations. Ocean Model. 71, 8191.Google Scholar
Williams, T. D., Bennetts, L. G., Squire, V. A., Dumont, D. & Bertino, L. 2013b Wave–ice interactions in the marginal ice zone. Part 2: numerical implementation and sensitivity studies along 1D transects of the ocean surface. Ocean Model. 71, 92101.Google Scholar
Young, I. R., Zieger, S. & Babanin, A. V. 2011 Global trends in wind speed and wave height. Science 332 (6028), 451455.Google Scholar