Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-27T21:46:08.182Z Has data issue: false hasContentIssue false

Relationships between syn-orogenic sedimentation and nappe emplacement in the hinterland of the Variscan belt in NW Iberia deduced from detrital zircons

Published online by Cambridge University Press:  10 June 2015

JOSÉ R. MARTÍNEZ CATALÁN*
Affiliation:
Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain
EMILIO GONZÁLEZ CLAVIJO
Affiliation:
Instituto Geológico y Minero de España, Azafranal, 48, 37001 Salamanca, Spain
CARLOS MEIRELES
Affiliation:
Laboratório Nacional de Energia e Geologia (LNEG), Rua da Amieira, Apartado 1089, 4466–956 S. Mamede de Infesta, Portugal
RUBÉN DÍEZ FERNÁNDEZ
Affiliation:
Departamento de Petrología y Geoquímica and Instituto de Geociencias (UCM, CSIC), Universidad Complutense de Madrid, 28040 Madrid, Spain
JAMES BEVIS
Affiliation:
GEMOC, Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia
*
Author for correspondence: jrmc@usal.es

Abstract

Flysch-type, syn-orogenic deposits of Carboniferous age occur in relation to the emplacement of a large allochthonous nappe stack in the Variscan belt of NW Iberia. New U–Pb age populations of detrital zircons obtained using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are considered together with others from previously dated samples to establish the relationships between sedimentation and thrusting. The age populations of four syn-orogenic formations are compared with those of the pre-orogenic sequence in the Autochthon and Parautochthon, representing the Gondwanan passive margin, and in the Allochthon, formed by peri-Gondwanan and oceanic terranes. In addition, a new structural study has been carried out to understand the relationships between the syn-orogenic deposits and the development of Variscan structures. The aims are to identify the sources of sediments and to establish the relationship between Variscan structural evolution and syn-orogenic sedimentation. Development of a forebulge outwards from the allochthonous front, deduced from the structural study, suggests the existence of depocentres that hosted the syn-orogenic sediments. Together with the trend shown by the more recent zircons in each formation, that are younger towards the external zones, the data suggest that sedimentation occurred in progressively migrating depocentres formed in front of the allochthonous wedge during its emplacement. The zircon age populations point to the Allochthon as the main source of detritus for the syn-orogenic basins, with perhaps a limited participation of the Parautochthon and Autochthon in the younger formations.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abati, J. & Dunning, G. R. 2002. Edad U–Pb en monacitas y rutilos de los paragneises de la Unidad de Agualada (Complejo de Órdenes, NW del Macizo Ibérico). Geogaceta 32, 95–8.Google Scholar
Abati, J., Dunning, G. R., Arenas, R., Díaz García, F., González Cuadra, P., Martínez Catalán, J. R. & Andonaegui, P. 1999. Early Ordovician orogenic event in Galicia (NW Spain): evidence from U–Pb ages in the uppermost unit of the Ordenes Complex. Earth and Planetary Science Letters 165, 213–28.CrossRefGoogle Scholar
Abati, J., Gerdes, A., Fernández-Suárez, J., Arenas, R., Whitehouse, M. J. & Díez Fernández, R. 2010. Magmatism and early-Variscan continental subduction in the northern Gondwana margin recorded in zircons from the basal units of Galicia, NW Spain. Geological Society of America Bulletin 122, 219–35.CrossRefGoogle Scholar
Albert, R., Arenas, R., Gerdes, A., Sánchez Martínez, S., Fernández-Suárez, J. & Fuenlabrada, J. M. 2015. Provenance of the Variscan Upper Allochthon (Cabo Ortegal Complex, NW Iberian Massif). Gondwana Research. Published online 15 November 2014. doi: 10.1016/j.gr.2014.10.016.Google Scholar
Aldaya, F., Arribas, A., González Lodeiro, F., Iglesias, M., Martínez Catalán, J. R. & Martínez-García, E. 1973. Presencia de una nueva fase de deformación, probablemente prehercínica en el Noroeste y Centro de la Península Ibérica. Stvdia Geologica Salmanticensia 6, 2948.Google Scholar
Aldaya, F., Carls, P., Martínez-García, E. & Quiroga, J. L. 1976. Nouvelles précisions sur la série de San Vitero (Zamora, nord-ouest de l'Espagne). Comptes Rendus de l'Académie des Sciences, Paris, Série D 283, 881–3.Google Scholar
Ancochea, E., Arenas, R, Brandle, J. L., Peinado, M. & Sagredo, J. 1988. Caracterización de las rocas metavolcánicas silúricas del Noroeste del Macizo Ibérico. Geociências, Aveiro, 3, 2334.Google Scholar
Andersen, T. 2002. Correction of common-lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.Google Scholar
Andonaegui, P., González del Tánago, J., Arenas, R., Abati, J., Martínez Catalán, J. R., Peinado, M. & Díaz García, F. 2002. Tectonic setting of the Monte Castelo gabbro (Ordenes Complex, northwestern Iberian Massif): evidence for an arc-related terrane in the hanging wall to the Variscan suture. In Variscan–Appalachian Dynamics: The Building of the Late Paleozoic Basement (eds Catalán, J. R. Martínez, Hatcher, R. D. Jr., Arenas, R. & García, F. Díaz), pp. 3756. Geological Society of America, Special Paper no. 364.Google Scholar
Andonaegui, P., Castiñeiras, P., González Cuadra, P., Arenas, R., Sánchez Martínez, S., Abati, J., Díaz García, F. & Martínez Catalán, J. R. 2012. The Corredoiras orthogneiss (NW Iberian Massif): geochemistry and geochronology of the Paleozoic magmatic suite developed in a peri-Gondwanan arc. Lithos 128–131, 8499.CrossRefGoogle Scholar
Antona, J. F. & Martínez Catalán, J. R. 1990. Interpretación de la Formación San Vitero en relación con la Orogenia Hercínica. Cuadernos do Laboratorio Xeolóxico de Laxe 15, 257–69.Google Scholar
Arenas, R. & Martínez Catalán, J. R. 2003. Low-P metamorphism following a Barrovian-type evolution. Complex tectonic controls for a common transition, as deduced in the Mondoñedo thrust sheet (NW Iberian Massif). Tectonophysics 365, 143–64.Google Scholar
Arenas, R., Martínez Catalán, J. R., Sánchez Martínez, S., Díaz García, F., Abati, J., Fernández-Suárez, J., Andonaegui, P. & Gómez-Barreiro, J. 2007a. Paleozoic ophiolites in the Variscan suture of Galicia (northwest Spain): distribution, characteristics and meaning. In 4-D Framework of Continental Crust (eds Hatcher, R. D. Jr., Carlson, M. P., McBride, J. H. & Martínez Catalán, J. R.), pp. 425–44. Geological Society of America, Memoir no. 200.Google Scholar
Arenas, R., Martínez Catalán, J. R., Sánchez Martinez, S., Fernández-Suárez, J., Andonaegui, P., Pearce, J. A. & Corfu, F. 2007b. The Vila de Cruces Ophiolite: a remnant of the early Rheic Ocean in the Variscan suture of Galicia (NW Iberian Massif). Journal of Geology 115, 129–48.CrossRefGoogle Scholar
Arenas, R., Sánchez Martínez, S., Gerdes, A., Albert, R., Díez Fernández, R. & Andonaegui, P. 2014. Re-interpreting the Devonian ophiolites involved in the Variscan suture: U–Pb and Lu–Hf zircon data of the Moeche Ophiolite (Cabo Ortegal Complex, NW Iberia). International Journal of Earth Sciences 103, 1385–402.CrossRefGoogle Scholar
Ballèvre, M., Fourcade, S., Capdevila, R., Peucat, J. -J., Cocherie, A. & Fanning, C. M. 2012. Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan belt, France): implications for the breakup of Gondwana. Gondwana Research 21, 1019–36.Google Scholar
Ballèvre, M., Martínez Catalán, J. R., López-Carmona, A., Pitra, P., Abati, J., Díez Fernández, R., Ducassou, C., Arenas, R., Bosse, V., Castiñeiras, P., Fernández-Suárez, J., Gómez Barreiro, J., Paquette, J. L., Peucat, J. J., Poujol, M., Ruffet, G. & Sánchez Martínez, S. 2014. Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French-Spanish project. In The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust (eds Schulmann, K., Catalán, J. R. Martínez, Lardeaux, J. M., Janousek, V. & Oggiano, G.), pp. 77113. Geological Society of London, Special Publication no. 405.Google Scholar
Bea, F., Montero, P., Talavera, C & Zinger, T. 2006. A revised Ordovician age for the Miranda do Douro orthogneiss, Portugal. Zircon U–Pb ion-microprobe and LA-ICPMS dating. Geologica Acta 4, 395401.Google Scholar
Bea, F., Montero, P., Talavera, C., Abu Anbar, M., Scarrow, J. H., Molina, J. F. & Moreno, J. A. 2010. The palaeogeographic position of Central Iberia in Gondwana during the Ordovician: evidence from zircon chronology and Nd isotopes. Terra Nova 22, 341–6.Google Scholar
Belousova, E., Griffin, W. L., Shee, S. R., Jackson, S. E. & O'Reilly, S. Y. 2001. Two age populations of zircons from the Timber Creek kimberlites, Northern Territory, as determined by laser-ablation ICPMS analysis. Australian Journal of Earth Sciences 48, 757–65.Google Scholar
Black, L. P. & Gulson, B. L. 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR Journal of Australian Geology and Geophysics 3, 227–32.Google Scholar
Capdevila, R. & Vialette, Y. 1970. Estimation radiométrique de l’âge de la deuxième phase tectonique hercynienne en Galice Moyenne (Nord-Ouest de l'Espagne). Comptes Rendus de l'Académie des Sciences, Paris 270, 2527–30.Google Scholar
Castiñeiras, P., Díaz García, F. & Gómez Barreiro, J. 2010. REE-assisted U–Pb zircon age (SHRIMP) of an anatectic granodiorite: constraints on the evolution of the A Silva granodiorite, Iberian Allochthonous Complexes. Lithos 116, 153–66.Google Scholar
Dallmeyer, R. D., Ribeiro, A. & Marques, F. 1991. Polyphase Variscan emplacement of exotic terranes (Morais and Bragança Massifs) onto Iberian successions: evidence from 40Ar/39Ar mineral ages. Lithos 27, 133–44.Google Scholar
Dallmeyer, R. D., Martínez Catalán, J. R., Arenas, R., Gil Ibarguchi, J. I., Gutiérrez Alonso, G., Farias, P., Aller, J. & Bastida, F. 1997. Diachronous Variscan tectonothermal activity in the NW Iberian Massif: evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 277, 307–37.Google Scholar
Dias da Silva, Í. 2014. Geología de las Zonas Centro Ibérica y Galicia – Trás-os-Montes en la parte oriental del Complejo de Morais, Portugal/España. Laboratorio Xeolóxico de Laxe, Instituto Universitario de Xeoloxía, A Coruña, Spain. Serie Nova Terra no. 45, 424 pp.Google Scholar
Dias da Silva, I. F., González Clavijo, E., Gutiérrez Alonso, G. & Gómez Barreiro, J. 2014a. Large Upper Cambrian rhyolite olistoliths locked in the Early Carboniferous Variscan syn-orogenic melange of the parautochthonous realm of the NW Iberian Massif. In Gondwana 15. North Meets South (eds Pankhurst, R. J., Castiñeiras, P. & Martínez, S. Sánchez), p. 52. Abstracts Book.Google Scholar
Dias da Silva, Í., Linnemann, U., Hofmann, M., González Clavijo, E., Díez-Montes, A. & Martínez Catalán, J. R. 2014b. Detrital zircon and tectonostratigraphy of the Parautochthon under the Morais Complex (NE Portugal): implications for the Variscan accretionary history of the Iberian Massif. Journal of the Geological Society, London. 172, 4561.Google Scholar
Dias da Silva, I., Valverde-Vaquero, P., González-Clavijo, E., Díez-Montes, A. & Martínez Catalán, J. R. 2014c. Structural and stratigraphical significance of U–Pb ages from the Mora and Saldanha volcanic complexes (NE Portugal, Iberian Variscides). In The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust (eds Schulmann, K., Catalán, J. R. Martínez, Lardeaux, J. M., Janousek, V. & Oggiano, G.), pp. 115–35. Geological Society of London, Special Publication no. 405.Google Scholar
Díaz García, F., Arenas, R., Martínez Catalán, J. R., González del Tánago, J. & Dunning, G. 1999. Tectonic evolution of the Careón ophiolite (Northwest Spain): a remnant of oceanic lithosphere in the Variscan belt. Journal of Geology 107, 587605.Google Scholar
Díez Fernández, R., Castiñeiras, P. & Gómez Barreiro, J. 2012. Age constraints on Lower Paleozoic convection system: magmatic events in the NW Iberian Gondwana margin. Gondwana Research 21, 1066–79.Google Scholar
Díez Fernández, R. & Martínez Catalán, J. R. 2009. 3D analysis of an Ordovician igneous ensemble: a complex magmatic structure hidden in a polydeformed allochthonous Variscan unit. Journal of Structural Geology, 31, 222–36.Google Scholar
Díez Fernández, R., Martínez Catalán, J. R., Arenas, R., Abati, J., Gerdes, A. & Fernández-Suárez, J. 2012a. U–Pb detrital zircon analysis of the lower allochthon of NW Iberia: age constraints, provenance and links with the Variscan mobile belt and Gondwanan cratons. Journal of the Geological Society, London 169, 655–65.Google Scholar
Díez Fernández, R., Martínez Catalán, J. R., Gerdes, A., Abati, J., Arenas, R. & Fernández-Suárez, J. 2010. U–Pb ages of detrital zircons from the basal allochthonous units of NW Iberia: provenance and paleoposition on the northern margin of Gondwana during the Neoproterozoic and Paleozoic. Gondwana Research 18, 385–99.CrossRefGoogle Scholar
Díez Fernández, R., Martínez Catalán, J. R., Gómez Barreiro, J. & Arenas, R. 2012b. Extensional flow during gravitational collapse: a tool for setting plate convergence (Padrón migmatitic dome, Variscan belt, NW Iberia). Journal of Geology 120, 83103.Google Scholar
Díez Montes, A., Martínez Catalán, J. R. & Bellido Mulas, F. 2010. Role of the Ollo de Sapo massive felsic volcanism of NW Iberia in the Early Ordovician dynamics of northern Gondwana. Gondwana Research 17, 363–76.Google Scholar
Engel, W., Feist, R. & Franke, W. 1982. Le Carbonifère ante-Stéphanien de la Montagne Noire: raports entre mise en place des nappes et sédimentation. Bulletin du Bureau de Recherches Géologiques et Minières 2, 341–89.Google Scholar
Engel, W., Flehmig, W. & Franke, W. 1983. The mineral composition of Rhenohercynian flysch sediments and its tectonic significance. In Intracontinental Fold Belts – Case Studies in the Variscan Belt of Europe and the Damara Belt in Namibia (eds Martin, H. & Eder, W), pp. 171–84. Berlin: Springer-Verlag.Google Scholar
Escuder Viruete, J., Arenas, R. & Martínez Catalán, J. R. 1994. Tectonothermal evolution associated with Variscan crustal extension in the Tormes Gneiss Dome (NW Salamanca, Iberian Massif, Spain). Tectonophysics 238, 117–38.CrossRefGoogle Scholar
Farias Arquer, P. 1990. La Geología de la Región del Sinforme de Verín (Cordillera Herciniana, NW de España). Laboratorio Xeolóxico de Laxe, A Coruña, Spain. Serie Nova Terra no. 2, 201 pp.Google Scholar
Farias, P., Gallastegui, G., González-Lodeiro, F., Marquínez, J., Martín Parra, L. M., Martínez Catalán, J. R., Pablo Maciá, J. G. de, & Rodríguez Fernández, L. R. 1987. Aportaciones al conocimiento de la litoestratigrafía y estructura de Galicia Central. Memórias da Faculdade de Ciências, Universidade do Porto 1, 411–31.Google Scholar
Farias, P. & Marcos, A. 2004. Dominio Esquistoso de Galicia-Trás-os-Montes. In Geología de España (ed. Vera, J. A.), pp. 135–8. Madrid: SGE-IGME.Google Scholar
Fernández, C., Becchio, R., Castro, A., Viramonte, J. M., Moreno-Ventas, I. & Corretgé, L. G. 2008. Massive generation of atypical ferrosilicic magmas along the Gondwana active margin: implications for cold plumes and back-arc magma generation. Gondwana Research 14, 451–73.Google Scholar
Fernández-Suárez, J., Arenas, R., Abati, J., Martinez Catalán, J. R., Whitehouse, M. J. & Jeffries, T. 2007. U–Pb chronometry of polymetamorphic high-pressure granulites: an example from the allochthonous terranes of the NW Iberian Varsican belt. In 4-D Framework of Continental Crust (eds Hatcher, R. D. Jr., Carlson, M. P., McBride, J. H. & Catalán, J. R. Martínez), pp. 469–88. Geological Society of America, Memoir no. 200.CrossRefGoogle Scholar
Fernández-Suárez, J., Díaz García, F., Jeffries, T., Arenas, R. & Abati, J. 2003. Constraints on the provenance of the uppermost allochthonous terrane of the NW Iberian Massif: inferences from detrital zircon U–Pb ages. Terra Nova 15, 138–44.CrossRefGoogle Scholar
Fernández-Suárez, J., Dunning, G. R., Jenner, G. A. & Gutiérrez-Alonso, G. 2000. Variscan collisional magmatism and deformation in NW Iberia: constraints from U–Pb geochronology of granitoids. Journal of the Geological Society, London 157, 565–76.Google Scholar
Fernández-Suárez, J., Gutiérrez-Alonso, G., Pastor-Galán, D., Hofmann, M., Murphy, J. B. & Linnemann, U. 2014. The Ediacaran-Early Cambrian detrital zircon record of NW Iberia: possible sources and paleogeographic constraints. International Journal of Geological Sciences 103, 1335–57.Google Scholar
Floor, P. 1966. Petrology of an aegirine-riebeckite gneiss-bearing part of the Hesperian Massif: the Galiñeiro and surrounding areas, Vigo, Spain. Leidse Geologische Mededelingen 36, 1204.Google Scholar
Fortey, R. A. & Cocks, L. R. M. 1988. Arenig to Llandovery faunal distributions in the Caledonides. In The Caledonian–Appalachian Orogen (eds Harris, A. L. & Fettes, D. J.), pp. 233–46. Geological Society of London, Special Publication no. 38.Google Scholar
Franke, W. & Engel, W. 1986. Synorogenic sedimentation in the Variscan Belt of Europe. Bulletin de la Société Géologique de France 2, 2533.Google Scholar
Fuenlabrada, J. M., Arenas, R., Sánchez Martínez, S., Díaz García, F. & Castiñeiras, P. 2010. A peri-Gondwanan arc in NW Iberia. I: isotopic and geochemical constraints to the origin of the arc – a sedimentary approach. Gondwana Research 17, 338–51.Google Scholar
Galán, D., Gutiérrez-Alonso, G., Murphy, J. B., Fernández-Suárez, J., Hofmann, M. & Linnemann, U. 2012. Provenance analysis of the Paleozoic sequences of the northern Gondwana margin in NW Iberia: passive margin to Variscan collision and orocline development. Gondwana Research 23, 1089–103.Google Scholar
Galán, G. & Marcos, A. 1997. Geochemical evolution of high-pressure mafic granulites from the Bacariza formation (Cabo Ortegal complex, NW Spain): an example of a heterogeneous lower crust. Geologische Rundschau 86, 539–55.Google Scholar
Gallastegui, G., Martín Parra, L. M., Pablo Maciá, J. G. de & Rodríguez Fernández, L. R. 1988. Las metavulcanitas del Dominio Esquistoso de Galicia-Tras-os-Montes: petrografía, geoquímica y ambiente geotectónico (Galicia, NO de España). Cuadernos do Laboratorio Xeolóxico de Laxe, A Coruña, Spain 12, 127–39.Google Scholar
Gómez-Barreiro, J., Martínez Catalán, J. R., Arenas, R., Castiñeiras, P., Abati, J., Díaz García, F. & Wijbrans, J. R. 2007. Tectonic evolution of the upper allochthon of the Órdenes Complex (northwestern Iberian Massif): structural constraints to a polyorogenic peri-Gondwanan terrane. In The Evolution of the Rheic Ocean: From Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision (eds Linnemann, U., Nance, R. D., Kraft, P. & Zulauf, G.), pp. 315–32. Geological Society of America, Special Paper no. 423.Google Scholar
Gómez-Barreiro, J., Wijbrans, J. R., Castiñeiras, P., Martínez Catalán, J. R., Arenas, R., Díaz García, F. & Abati, J. 2006. 40Ar/39Ar laserprobe dating of mylonitic fabrics in a polyorogenic terrane of NW Iberia. Journal of the Geological Society, London 163, 6173.Google Scholar
González Clavijo, E. 2006. La Geología del Sinforme de Alcañices, Oeste de Zamora. Laboratorio Xeolóxico de Laxe, A Coruña, Spain. Serie Nova Terra no. 31, 238 ppGoogle Scholar
González Clavijo, E. & Martínez Catalán, J. R. 2002. Stratigraphic record of preorogenic to synorogenic sedimentation, and tectonic evolution of imbricate units in the Alcañices synform (northwestern Iberian Massif). In Variscan–Appalachian Dynamics: The Building of the Late Paleozoic Basement (eds Martínez Catalán, J. R., Hatcher, R. D. Jr., Arenas, R. & García, F. Díaz), pp. 1735. Geological Society of America, Special Paper no. 364.Google Scholar
Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J. & O'Reilly, S. Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131, 231–82.Google Scholar
Gutiérrez-Alonso, G., Fernández-Suárez, J., Jeffries, T. E., Jenner, G. A., Tubrett, M. N., Cox, R. & Jackson, S. E. 2003. Terrane accretion and dispersal in the northern Gondwana margin. An Early Paleozoic analogue of a long-lived active margin. Tectonophysics 365, 221–32.Google Scholar
Gutiérrez-Alonso, G., Fernández-Suárez, J., Jeffries, T. E., Johnston, S. T., Pastor-Galán, D., Murphy, J. B., M. Franco, P. & Gonzalo, J. C. 2011. Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics 30, TC5008, 117, doi: 10.1029/2010TC002845.Google Scholar
Gutiérrez-Alonso, G., Murphy, J. B., Fernández-Suárez, J. & Hamilton, M. A. 2008. Geocronología de las rocas volcánicas de El Castillo (Salamanca, Zona Centroibérica). Geogaceta 44, 36.Google Scholar
Gutiérrez Marco, J. C., de San José, M. A. & Pieren, A. P. 1990. Central-Iberian Zone. Post-Cambrian Palaeozoic stratigraphy. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D. & García, E. Martínez), pp. 160–71. Berlin: Springer-Verlag.Google Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.Google Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00 – A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication no. 4, 72 pp.Google Scholar
Marcos, A. & Pulgar, J. A. 1982. An approach to the tectonostratigraphic evolution of the Cantabrian Foreland thrust and fold belt, Hercynian Cordillera of NW Spain. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 163, 256–60.Google Scholar
Marques, F. O., Ribeiro, A. & Munhá, J. M. 1996. Geodynamic evolution of the Continental Allochthonous Terrane (CAT) of the Bragança Nappe Complex, NE Portugal. Tectonics 15, 747–62.Google Scholar
Marques, F. O., Ribeiro, A. & Pereira, E. 1991–1992. Tectonic evolution of the deep crust: Variscan reactivation by extension and thrusting of Precambrian basement in the Bragança and Morais massifs (Trás-os-Montes, NE Portugal). Geodinamica Acta 5, 135–51.Google Scholar
Marquínez García, J. L. 1984. La geología del área esquistosa de Galicia Central (Cordillera Herciniana, NW de España). Memorias del Instituto Geológico y Minero de España 100, 1231.Google Scholar
Martínez, S. S., Gerdes, A., Arenas, R. & Abati, J. 2012. The Bazar Ophiolite of NW Iberia: a relic of the Iapetus-Tornquist Ocean in the Variscan suture. Terra Nova 24, 283–94.CrossRefGoogle Scholar
Martínez Catalán, J. R., Arenas, R., Abati, J., Sánchez Martínez, S., Díaz García, F., Fernández-Suárez, J., González Cuadra, P., Castiñeiras, P., Gómez Barreiro, J., Díez Montes, A., González Clavijo, E., Rubio Pascual, F. J., Andonaegui, P., Jeffries, T. E., Alcock, J. E., Díez Fernández, R. & López Carmona, A. 2009. A rootless suture and the loss of the roots of a mountain chain: the Variscan belt of NW Iberia. Comptes Rendus Geoscience 341, 114–26.Google Scholar
Martínez Catalán, J. R., Arenas, R., Díaz García, F., González Cuadra, P., Gómez-Barreiro, J., Abati, J., Castiñeiras, P., Fernández-Suárez, J., Sánchez-Martínez, S., Andonaegui, P., González Clavijo, E., Díez Montes, A., Rubio Pascual, F. J. & Valle Aguado, B. 2007. Space and time in the tectonic evolution of the northwestern Iberian Massif: implications for the Variscan belt. In 4-D Framework of Continental Crust (eds Hatcher, R. D. Jr., Carlson, M. P., McBride, J. H. & Catalán, J. R. Martínez), pp. 403–23. Geological Society of America, Memoir no. 200.Google Scholar
Martínez Catalán, J. R., Arenas, R. & Díez Balda, M. A. 2003. Large extensional structures developed during emplacement of a crystalline thrust sheet: the Mondoñedo nappe (NW Spain). Journal of Structural Geology 25, 1815–39.Google Scholar
Martínez Catalán, J. R., Fernández-Suárez, J., Jenner, G. A., Belousova, E. & Díez Montes, A. 2004. Provenance constraints from detrital zircon U–Pb ages in the NW Iberian Massif: implications for Paleozoic plate configuration and Variscan evolution. Journal of the Geological Society, London 161, 463–76.Google Scholar
Martínez Catalán, J. R., Fernández-Suárez, J., Meireles, C., González Clavijo, E., Belousova, E. & Saeed, A. 2008. U–Pb detrital zircon ages in synorogenic deposits of the NW Iberian Massif (Variscan belt): interplay of Devonian–Carboniferous sedimentation and thrust tectonics. Journal of the Geological Society, London 165, 687–98.Google Scholar
Martínez Catalán, J. R., Rubio Pascual, F. J., Díez Montes, A., Díez Fernández, R., Gómez Barreiro, J., Dias da Silva, I., González Clavijo, E., Ayarza, P. & Alcock, J. E. 2014. The late Variscan HT/LP metamorphic event in NW and Central Iberia: relationships to crustal thickening, extension, orocline development and crustal evolution. In The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust (eds Schulmann, K., Catalán, J. R. Martínez, Lardeaux, J. M., Janousek, V., & Oggiano, G.), pp. 225–47. Geological Society of London, Special Publication no. 405.Google Scholar
Martínez García, E. 1972. El Silúrico de San Vitero (Zamora). Comparación con las series vecinas e importancia orogénica. Acta Geológica Hispánica 7, 104–8.Google Scholar
Martínez García, E. 1973. Deformación y metamorfismo en la zona de Sanabria. Stvdia Geologica Salmanticensia 5, 7106.Google Scholar
Matte, Ph. 1968. La structure de la virgation hercynienne de Galice (Espagne). Revue de Géologie Alpine 44, 1128.Google Scholar
Meireles, C. A. P. 2000. Carta Geológica de Portugal, 1:50.000, Folha 3-D, Espinhosela, 64 pp. Lisbon: Instituto Geológico e Mineiro.Google Scholar
Meireles, C. A. P. 2013. Litoestratigrafía do Paleozóico do Sector a Nordeste de Bragança (Trás-os-Montes). Laboratorio Xeolóxico de Laxe, A Coruña, Spain. Serie Nova Terra no. 42, 471 pp.Google Scholar
Montero, P., Bea, F., Corretgé, L. G., Floor, P. & Whitehouse, M. J. 2009a. U–Pb ion microprobe dating and Sr and Nd isotope geology of the Galiñeiro Igneous Complex: a model for the peraluminous/peralkaline duality of the Cambro-Ordovician magmatism of Iberia. Lithos 107, 227–38.Google Scholar
Montero, P., Bea, F., González-Lodeiro, F., Talavera, C. & Whitehouse, M. J. 2007. Zircon ages of the metavolcanic rocks and metagranites of the Ollo de Sapo Domain in central Spain: implications for the Neoproterozoic to Early Palaeozoic evolution of Iberia. Geological Magazine 144, 963–76.Google Scholar
Montero, P., Talavera, C., Bea, F., Lodeiro, F. G. & Whitehouse, M. J. 2009b. Zircon geochronology of the Ollo de Sapo Formation and the age of the Cambro-Ordovician rifting in Iberia. Journal of Geology 117, 174–91.Google Scholar
Murphy, J. B. & Nance, R. D. 1991. Supercontinent model for the contrasting character of Late Proterozoic orogenic belts, Geology 19, 469–72.Google Scholar
Oliveira, J. T. 1990. South Portuguese Zone. Stratigraphy and synsedimentary tectonism. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D. & García, E. Martínez), pp. 334–47. Berlin: Springer-Verlag.Google Scholar
Ordóñez Casado, B., Gebauer, D., Schäfer, H. J., Gil Ibarguchi, J. I. & Peucat, J. J. 2001. A single Devonian subduction event for the HP/HT metamorphism of the Cabo Ortegal complex within the Iberian Massif. Tectonophysics 332, 359–85.Google Scholar
Pereira, M. F., Chichorro, M., Johnston, S. T., Gutiérrez-Alonso, G., Silva, J. B., Linnemann, U., Hofmann, M. & Drost, K. 2012. The missing Rheic Ocean magmatic arcs: provenance analysis of Late Paleozoic sedimentary clastic rocks of SW Iberia. Gondwana Research 22, 882–91.Google Scholar
Pereira, Z., Meireles, C. & Pereira, E. 1999. Upper Devonian palynomorphs of NE sector of Trás-os-Montes (Central Iberian Zone). In XV Reunión de Geología del Oeste Peninsular – International Meeting on Cadomian Basement (eds Vintaned, G., Eguíluz, L. & Palacios, T.), pp. 201–6. Badajoz, Spain.Google Scholar
Pereira, M. F., Ribeiro, C., Vilallonga, F., Chichorro, M., Drost, K., Silva, J. B., Albardeiro, L., Hofmann, M. & Linnemann, U. 2014. Variability over time in the sources of South Portuguese Zone turbidites: evidence of denudation of different crustal blocks during the assembly of Pangaea. International Journal of Earth Sciences 103, 1453–70.Google Scholar
Pérez-Estaún, A. 1974. Aportaciones al conocimiento del Carbonífero de San Clodio (Prov. de Lugo). Breviora Geologica Asturica 18, 38.Google Scholar
Pérez-Estaún, A., Bastida, F., Alonso, J. L., Marquínez, J., Aller, J., Álvarez-Marrón, J., Marcos, A. & Pulgar, J. A. 1988. A thin-skinned tectonics model for an arcuate fold and thrust belt: the Cantabrian Zone (Variscan Ibero-Armorican Arc). Tectonics 7, 517–37.Google Scholar
Pérez-Estaún, A., Bastida, F., Martínez Catalán, J. R., Gutierrez Marco, J. C., Marcos, A. & Pulgar, J. A. 1990. West Asturian-Leonese Zone. Stratigraphy. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D. & García, E. Martínez), pp. 92102. Berlin: Springer-Verlag.Google Scholar
Pérez-Estaún, A., Martínez Catalán, J. R. & Bastida, F. 1991. Crustal thickening and deformation sequence in the footwall to the suture of the Variscan Belt of northwest Spain. Tectonophysics 191, 243–53.Google Scholar
Peucat, J. J., Bernard-Griffiths, J., Gil Ibarguchi, J. I., Dallmeyer, R. D., Menot, R. P., Cornichet, J. & Iglesias Ponce de León, M. 1990. Geochemical and geochronological cross-section of the deep Variscan crust: the Cabo Ortegal high-pressure nappe (northwestern Spain). Tectonophysics 177, 263–92.Google Scholar
Piçarra, J. M., Gutiérrez-Marco, J. C., , A. A., Meireles, C. & González-Clavijo, E. 2006a. Silurian graptolite biostratigraphy of the Galicia-Trás-os-Montes Zone (Spain and Portugal). Journal of the Geological Society of Sweden (Geologiska Foreningen), 128, 185–8.Google Scholar
Piçarra, J. M., Gutiérrez-Marco, J. C., Sarmiento, C. & , A. A. 2006b. Novos dados de conodontes e graptólitos no Paleozóico parautóctone da Zona Galiza–Trás-os-Montes (Espanha e Portugal). In VII Cogresso Nacional de Geologia (eds Mirão, J. & Balbino, A.), pp. 653–6. Universidade de Évora, Abstracts no. 2.Google Scholar
Pin, C., Paquette, J. L., Ábalos, B., Santos, F. J. & Gil Ibarguchi, J. I. 2006. Composite origin of an early Variscan transported suture: ophiolitic units of the Morais Nappe Complex (north Portugal). Tectonics 25, TC5001, 119, doi: 10.1029/2006TC001971.Google Scholar
Pin, C., Paquette, J. L., Santos Zalduegui, J. F. & Gil Ibarguchi, J. I. 2002. Early Devonian supra-subduction zone ophiolite related to incipient collisional processes in the Western Variscan Belt: the Sierra de Careón unit, Ordenes Complex, Galicia. In Variscan–Appalachian Dynamics: The Building of the Late Paleozoic Basement (eds Catalán, J. R. Martínez, Hatcher, R. D. Jr., Arenas, R. & García, F. Díaz), pp. 5771. Geological Society of America, Special Paper no. 364.Google Scholar
Ribeiro, A., Munhá, J., Dias, R., Mateus, A., Pereira, E., Ribeiro, L., Fonseca, P., Araújo, A., Oliveira, T., Romão, J., Chaminé, H., Coke, C. & Pedro, J. 2007. Geodynamic evolution of the SW Europe Variscides. Tectonics 26, 124, TC6009, doi: 10.1029/2006TC002058.Google Scholar
Ribeiro, A., Pereira, E. & Dias, R. 1990. Central-Iberian Zone. Allochthonous Sequences. Structure in the northwest of the Iberian Peninsula. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, R. D., & García, E. Martínez), pp. 220–36. Berlin: Springer-Verlag.Google Scholar
Ribeiro, M. L. & Ribeiro, A. 1974. Signification paléogéographique et tectonique de la présence de galets de roches métamorphiques dans un flysch d’âge dévonien supérieur du Tras-os-Montes oriental (Nord-Est du Portugal). Comptes Rendues de l'Académie des Sciences, Paris 278, 3161–3.Google Scholar
Riemer, W. 1963. Entwicklung des Paläozoikums in der Südlichen Provinz Lugo (Spanien). Neues Jarbuch für Geologie und Paläontologie, Abhandlungen 117, 273–85.Google Scholar
Riemer, W. 1966. Datos para el conocimiento de la estratigrafía de Galicia. Notas y Comunicaciones del Instituto Geológico y Minero de España 81, 720.Google Scholar
Rodríguez Aller, J. 2005. Recristalización y Deformación de Litologías Supracorticales Sometidas a Metamorfismo de Alta Presión (Complejo de Malpica-Tuy, NO del Macizo Ibérico). Laboratorio Xeolóxico de Laxe, A Coruña, Spain. Serie Nova Terra no. 29, 572 pp.Google Scholar
Rodríguez, J., Cosca, J. I., Gil Ibarguchi, J. I. & Dallmeyer, R. D. 2003. Strain partitioning and preservation of 40Ar/39Ar ages during Variscan exhumation of a subducted crust (Malpica-Tui Complex, NW Spain). Lithos 70, 111–39.Google Scholar
Rubio-Ordóñez, A., Gutiérrez-Alonso, G., Valverde-Vaquero, P., Cuesta, A., Gallastegui, G., Gerdes, A. & Cárdenes, V. 2015. Arc-related Ediacaran magmatism along the northern margin of Gondwana: geochronology and isotopic geochemistry from northern Iberia. Gondwana Research, 27, 216–27.Google Scholar
Rubio Pascual, F. J., Arenas, R., Martínez Catalán, J. R., Rodríguez Fernández, L. R. & Wijbrans, J. 2013. Thickening and exhumation of the Variscan roots in the Iberian Central System: tectonothermal processes and 40Ar/39Ar ages. Tectonophysics 587, 207–21.Google Scholar
Sánchez Martínez, S. 2009. Geoquímica y Geocronología de las Ofiolitas de Galicia. Laboratorio Xeolóxico de Laxe, A Coruña, Spain. Serie Nova Terra no. 37, 351 pp.Google Scholar
Sánchez Martínez, S., Arenas, R., Andonaegui, P., Martínez Catalán, J. R. & Pearce, J. A. 2007a. Geochemistry of two associated ophiolites from the Cabo Ortegal complex (Variscan belt of northwest Spain). In 4-D Framework of Continental Crust (eds Hatcher, R. D. Jr., Carlson, M. P., McBride, J. H. & Catalán, J. R. Martínez), pp. 445–67. Geological Society of America, Memoir no. 200.Google Scholar
Sánchez Martínez, S., Arenas, R., Díaz García, F., Martínez Catalán, J. R., Gómez-Barreiro, J. & Pearce, J. A. 2007b. Careón Ophiolite, NW Spain: suprasubduction zone setting for the youngest Rheic Ocean floor. Geology 35, 53–6.Google Scholar
Santos Zalduegui, J. F., Schärer, U. & Gil Ibarguchi, J. I. 1995. Isotope constraints on the age and origin of magmatism and metamorphism in the Malpica-Tuy allochthon, Galicia, NW-Spain. Chemical Geology 121, 91103.Google Scholar
Santos Zalduegui, J. F., Schärer, U., Gil Ibarguchi, J. I. & Girardeau, J. 1996. Origin and evolution of the Paleozoic Cabo Ortegal ultramafic-mafic complex (NW Spain): U–Pb, Rb–Sr and Pb–Pb isotope data. Chemical Geology 129, 281304.Google Scholar
Sarmiento, G. N., Calvo, A. A. & González Clavijo, E. 1997. Conodontos paleozoicos (Ashgill-Emsiense) del Sinforme de Alcañices (oeste de Zamora, España). In Paleozoico Inferior del Noroeste de Gondwana (eds D'Anglade, A. Grandal, Gutiérrez-Marco, J. C. & Fidalgo, L. Santos), pp. 108–11. V Reunión Internacional del Proyecto 351 PICG, Libro de Resúmenes y Excursiones.Google Scholar
Sarmiento, G. N., Piçarra, J. M., Rebelo, J. A., Robardet, M., Gutíerrez-Marco, J. C., Storch, P. & Rábano, I. 1999. Le Silurien du Synclinorium de Moncorvo (NE du Portugal): bioestratigraphie et importance paléogéographique. Geobios 32, 749–67.Google Scholar
Schermerhorn, L. J. G. 1971. An outline of the stratigraphy of the Iberian pyrite belt. Boletín Geológico y Minero 82, 239–68.Google Scholar
Shaw, J., Gutiérrez-Alonso, G., Johnston, S. T. & Pastor-Galán, D. 2014. Provenance variability along the Early Ordovician north Gondwana margin: paleogeographic and tectonic implications of U–Pb detrital zircon ages from the Armorican Quartzite of the Iberian Variscan belt. Geological Society of America Bulletin 126, 702--719.Google Scholar
Soper, N. J. 1988. Timing and geometry of collision, terrane accretion and sinistral strike-slip events in the British Caledonides. In The Caledonian–Appalachian Orogen (eds Harris, A. L. & Fettes, D. J.), pp. 481–92. Geological Society of London, Special Publication no. 38.Google Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.Google Scholar
Suess, E. 1888. Das Antlitz der Erde. Vol. II. Wien: Tempsky, 508 pp.Google Scholar
Teixeira, C. & Pais, J. 1973. Sobre a presença de Devónico na região da Bragança (Guadramil e Mofreita) e de Alcañices (Zamora). Boletim da Sociedade Geológica de Portugal 18, 199202.Google Scholar
Vacas, J. M. & Martínez Catalán, J. R. 1987. El Sinforme de Alcañices en la transversal de Manzanal del Barco. Stvdia Geologica Salmanticensia 24, 151–75.Google Scholar
Valle Aguado, B., Azevedo, M. R., Schaltegger, U., Martínez Catalán, J. R. & Nolan, J. 2005. U–Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in Central Northern Portugal. Lithos 82, 169–84.Google Scholar
Valverde-Vaquero, P., Díez Balda, M. A., Díez Montes, A., Dörr, W., Escuder Viruete, J., González Clavijo, E., Maluski, H., Rodríguez-Fernández, L. R., Rubio, F. & Villar, P. 2007. The “hot orogen”: two separate Variscan low-pressure metamorphic events in the Central Iberian Zone. In Mechanics of Variscan Orogeny: A Modern View on Orogenic Research (eds Faure, M., Lardeaux, J. M., Ledru, P., Peschler, A. & Schulmann, K.), p. 168. Géologie de la France, 2007, no. 2. Societé Géologique de France and Bureau de Recherches Géologiques et Minières.Google Scholar
Valverde-Vaquero, P., Marcos, A., Farias, P. & Gallastegui, G. 2005. U–Pb dating of Ordovician felsic volcanism in the Schistose Domain of the Galicia-Trás-os-Montes Zone near Cabo Ortegal (NW Spain). Geológica Acta 3, 2737.Google Scholar
van Achterbergh, E., Ryan, C. G. & Griffin, W. L. 1999. GLITTER: on-line interactive data reduction for the laser ablation ICP-MS microprobe. In Proceedings of the 9th V.M. Goldschmidt Conference, p. 305. Cambridge, Massachusetts.Google Scholar
van Achterbergh, E., Ryan, C., Jackson, S. & Griffin, W. 2001. Appendix 3 Data reduction software for LA-ICP-MS. In Laser-Ablation-ICPMS in the Earth Sciences (ed. Sylvester, P.), pp. 239–43. Mineralogical Association of Canada Short Course no. 29.Google Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quart, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U–Th–Ph, Lu–Th, trace element and REE analyses. Geostandards Newsletter 19, 123.Google Scholar