Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-11T14:19:12.780Z Has data issue: false hasContentIssue false

Magnetic Polypropylene Nanocomposites Reinforced with In-situ Fabricated Iron Oxide Nanoparticles

Published online by Cambridge University Press:  28 January 2011

Jiahua Zhu
Affiliation:
Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX, 77710 USAzhanhu.guo@lamar.edu
Suying Wei
Affiliation:
Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA
Zhanhu Guo
Affiliation:
Integrated Composites Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX, 77710 USAzhanhu.guo@lamar.edu
Get access

Abstract

Polypropylene(PP)/Fe2O3 nanocomposites are fabricated using an in-situ method to uniformly disperse the magnetic nanoparticles (NPs) in polymer matrix. Maleic anhydride functionalized PP (f-PP) with different molecular weight is used as surfactant to stabilize the in-situ produced nanoparticles. The thermal behavior of PP and its nanocomposites with the incorporation of small amount f-PP is studied with thermal gravimetric analysis (TGA). The results show that the onset degradation temperature is increased by ~117 oC with the addition of NPs. Both melt rheology and transmission electron microscopy are used to investigate the NPs dispersion. Strong saturated magnetization (Ms) is observed after introducing f-PP to the nanocomposites through protecting the as-formed NPs from oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Guo, Z., Henry, L., Palshin, V. and Podlaha, E. J., J. Mater. Chem. 16, 17721777 (2006).Google Scholar
2. Mack, J. J., Viculis, L. M., Ali, A., Luoh, R., Yang, G., Hahn, H. T., Ko, F. K. and Kaner, R. B., Adv. Mater. 17, 7780 (2005).Google Scholar
3. Zhu, J., Wei, S., Chen, X., Karki, A. B., Rutman, D., Young, D. P. and Guo, Z., J. Phys. Chem. C 114, 88448850 (2010).Google Scholar
4. Zhu, J., Wei, S., Ryu, J., Budhathoki, M., Liang, G. and Guo, Z., J. Mater. Chem. 20, 49374948(2010).Google Scholar
5. Huynh, W., Dittmer, J., Libby, W., Whiting, G. and Alivisatos, A., Adv. Func. Mater. 13, 7379 (2003).Google Scholar
6. Guo, Z., Lee, S. E., Kim, H., Park, S., Hahn, H. T., Karki, A. B. and Young, D. P., Acta Mater. 57, 267277 (2009).Google Scholar
7. Gass, J., Poddar, P., Almand, J., Srinath, S. and Srikanth, H., Adv. Func. Mater. 16, 7175 (2006).Google Scholar
8. Li, J., Claude, J., Norena-Franco, L. E., Seok, S. I. and Wang, Q., Chem. Mater. 20, 63046306 (2008).Google Scholar
9. Zhu, J., Wei, S., Alexander, M. J., Dang, T. D., Ho, T. C. and Guo, Z., Adv. Func. Mater. 18, 30763084 (2010).Google Scholar
10. Boyer, C., Bulmus, V., Priyanto, P., Teoh, W. Y., Amal, R. and Davis, T. P., J. Mater. Chem. 19, 111123 (2009).Google Scholar
11. Lu, Y., Yin, Y., Mayers, B. T. and Xia, Y., Nano Lett. 2, 183186 (2002).Google Scholar
12. Zhang, D., Wei, S., Kaila, C., Su, X., Wu, J., Karki, A. B., Young, D. P. and Guo, Z., Nanoscale 2, 917919 (2010).Google Scholar
13. Guo, Z., Kumar, C., Henry, L. L., Doomes, E. E., Hormes, J., and Podlaha, E. J., J. Electrochem. Soc., 152, D1D5 (2005).Google Scholar
14. Guo, Z., Moldovan, M., Young, D. P., Henry, L. L., and Podlaha, E. J., Electrochem. Solid State Lett., 10, E31E35 (2007).Google Scholar
15. Zhu, J., Wei, S., Ryu, J., Sun, L., Luo, Z. and Guo, Z., ACS Appl. Mater. Interfaces 2, 21002107 (2010).Google Scholar
16. Guo, Z., Park, S., Wei, S., Pereira, T., Moldovan, M., Karki, A. B., Young, D. P. and Hahn, H. T., Nanotechnology, 18, 335704 (2007).Google Scholar
17. Pöschke, P., Abdel, M., Alig, I., Dudkin, S. and Lellinger, D., Polymer, 45, 8863 (2004).Google Scholar
18. Kashiwagi, T., Grulke, E., Hilding, J., Groth, K., Harris, R., Butler, K., Shields, J., Kharchenko, S. and Douglas, J., Polymer 45, 42274239 (2004).Google Scholar
19. Biercuk, M. J., Llaguno, M. C., Radosavljevic, M., Hyun, J. K., Johnson, A. T. and Fischer, J. E., Appl. Phys. Lett. 80, 27672769 (2002).Google Scholar
20. Ge, J. J., Hou, H., Li, Q., Graham, M. J., Greiner, A., Reneker, D. H., Harris, F. W. and Cheng, S. Z. D., J. Am. Chem. Soc. 126, 1575415761 (2004).Google Scholar
21. Kashiwagi, T., Du, F., Douglas, J. F., Winey, K. I., Harris, R. H. and Shields, J. R., Nat. Mater. 4, 928933 (2005).Google Scholar
22. Agag, T., Koga, T. and Takeichi, T., Polymer 42, 33993408 (2001).Google Scholar
23. Zhu, J., Morgan, A., Lamelas, F. J. and Wilkie, C. A., Chem. Mater. 13, 37743780 (2001).Google Scholar
24. Kechrakos, D. and Trohidou, K. N., Phys. Rev. B 58, 12169(1998).Google Scholar
25. Mikutta, C., Mikutta, R., Bonneville, S., Wagner, F., Voegelin, A., Christl, I. and Kretzschmar, R., Geochim. Cosmochim. Acta 72, 11111127 (2008).Google Scholar