Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-16T18:56:24.222Z Has data issue: false hasContentIssue false

Powder diffraction data and Rietveld refinement of metastable t-ZrO2 at low temperature

Published online by Cambridge University Press:  10 January 2013

J. Málek
Affiliation:
Joint Laboratory of Solid State Chemistry, Academy of Sciences of the Czech Republic & University of Pardubice, Studenská 84, Pardubice 530 09, Czech Republic
L. Beneš*
Affiliation:
Joint Laboratory of Solid State Chemistry, Academy of Sciences of the Czech Republic & University of Pardubice, Studenská 84, Pardubice 530 09, Czech Republic
T. Mitsuhashi
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305, Japan
*
a)Corresponding author.

Abstract

Indexed X-ray powder diffraction data are reported for the low temperature tetragonal ZrO2 obtained by crystallization of zirconia gel. The structure was refined by the Rietveld technique on the basis of space group P42/nmc. Refined unit cell dimensions are a = 3.5984(5) Å, c = 5.152(1) Å, V = 66.71 Å3, Dx=6.135 g/cm3, F18=62 (0.012, 24), RP=8.99, Rwp=11.48, RB=3.13.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argyriou, D.N., and Howard, C.J. (1995). “Re-investigation of Yttria-Tetragonal Zirconia Polycrystal (Y-TZP) by Neutron Powder Diffraciton-a Cautionary Tale,” J. Appl. Crystallogr. 28, 206208.CrossRefGoogle Scholar
Cyprés, R., Wollast, R., and Raucq, J. (1963). “Contribution on the Polymorphic Conversion of Pure Zirconia,” Ber. Dtsch. Keram. Ges. 40, 527–532.Google Scholar
Garvie, R.C. (1965). “Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect,” J. Phys. Chem. 69, 12381243.CrossRefGoogle Scholar
Katz, G. (1971). “X-Ray Diffraction Powder Pattern of Metastable Cubic ZrO2,J. Am. Ceram. Soc. 54, 531.CrossRefGoogle Scholar
Livage, J., Doi, K., and Maziéres, C. (1968). “Nature and Thermal Evolution of Amorphous Hydrated Zirconium Oxide,” J. Am. Ceram. Soc. 51, 349353.CrossRefGoogle Scholar
McCullough, J.D., and Trueblood, K.N. (1959). “The Crystal Structure of Baddeleyite (Monoclinic ZrO2),” Acta Crystallogr. 12, 507511.CrossRefGoogle Scholar
Mitsuhashi, T., Ichihara, M., and Tatsuke, U. (1974). “Characterization and Stabilization of Metastable Tetragonal ZrO2,J. Am. Ceram. Soc. 57, 97101.CrossRefGoogle Scholar
Smith, D.K., and Cline, C.F. (1962). “Verification of Existence of Cubic Zirconia at High Temperature,” J. Am. Ceram. Soc. 45, 249250.CrossRefGoogle Scholar
Smith, G.S., and Snyder, R.L. (1979). “A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Subbarao, E.C. (1981). “Zirconia - an overview,” in Advances in Ceramics, Science and Technology of Zirconia, Vol. 3, edited by A.H. Heuer, and L.W. Hobbs (The Americam Ceramic Society, New York, 1981), pp. 1–13.Google Scholar
Tani, E., Yoshimura, M., and Sómiya, S. (1983). “Formation of Ultrafine Tetragonal ZrO2 Powder Under Hydrothermal Conditions,” J. Am. Ceram. Soc. 66, 1114.CrossRefGoogle Scholar
Teufer, G. (1962). “The crystal structure of tetragonal ZrO2,Acta Crystallogr. 15, 1187.CrossRefGoogle Scholar
Wiles, D.B., and Young, R.A. (1982). “A new computer program for Rietveld analysis of X-ray powder diffraction patterns,” J. Appl. Cryst. 15, 149; see also Wiles, D.B., Sakthivel, A., and Young, R.A. (1990), Program DBW3.2S-PC-9005 (School of Physics, Georgia Institute of Technology, Atlanta, GA-30332, USA).Google Scholar