Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-17T14:06:35.927Z Has data issue: false hasContentIssue false

Forest structure and territory size relationship in the neotropical understorey insectivore Henicorhina leucosticta

Published online by Cambridge University Press:  17 December 2010

Luis Esteban Vargas*
Affiliation:
Escuela de Biología, Universidad de Costa Rica, 2060 San Pedro, San José, Costa Rica
Natalie Viviana Sánchez
Affiliation:
Instituto Internacional en Conservación y Manejo de Vida Silvestre, Universidad Nacional, 1350–3000 Heredia, Costa Rica
Gerardo Avalos
Affiliation:
Escuela de Biología, Universidad de Costa Rica, 2060 San Pedro, San José, Costa Rica The School for Field Studies, Center for Sustainable Development Studies, 10 Federal St., Salem, MA 01970, USA
*
1Corresponding author. Email: luis.vargascastro@ucr.ac.cr

Abstract:

The neotropical terrestrial insectivore Henicorhina leucosticta (Troglodytidae) maintains long-term territories through vocalizations and forages among leaf litter trapped in the understorey vegetation and ground litter. The relationship between forest structure and H. leucosticta territory size was studied in La Selva Biological Station, Costa Rica, during the non-breeding season in 2009. Forest structure was measured by assessing canopy openness and leaf area index (LAI) using hemispherical photography, while territory size was estimated with the playback technique using local conspecific vocalizations. Mean territory area was 3.8 ± 2.8 ha (mean ± SD, n = 10). Territory radius length was similar in old-growth forest and abandoned agro-forest plantations. We found that H. leucosticta territory size decreased as median LAI increased. We propose that LAI is related to territory size through the amount of leaf fall and subsequent leaf litter accumulation over the understorey plants, which constitutes an important reservoir of arthropod prey and nest materials for H. leucosticta. The long-term supply of food resources is likely to affect territory size in this species, as well as other insectivorous birds with similar foraging behaviour. These results are congruent with the structural cues hypothesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ASNER, G. P., SCURLOCK, J. M. & HICKE, J. A. 2003. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology and Biogeography Letters 12:191205.Google Scholar
BRÉDA, N. J. J. 2003. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany 54:24032417.CrossRefGoogle ScholarPubMed
BURNHAM, K. P. & ANDERSON, D. R. 2002. Model selection and inference: a practical information-theoretic approach. (Second edition). Springer-Verlag, New York. 488 pp.Google Scholar
CHASON, J. W, BALDOCCHI, D. D. & HUSTON, M. A. 1991. A comparison of direct and indirect methods for estimating forest canopy leaf area. Agricultural and Forest Meteorology 57:107128.CrossRefGoogle Scholar
CLARK, D. B., OLIVAS, P. C., OBERBAUER, S. F., CLARK, D. A. & RYAN, M. G. 2008. First direct landscape-scale measurement of tropical rain forest leaf area index, a key driver of global primary productivity. Ecology Letters 11:163172.Google Scholar
CLEMENTS, J. F. & SHANY, N. 2001. A field guide to the birds of Peru. Ibis Publishing Company, Temecula. 283 pp.Google Scholar
COURNAC, L., DUBOIS, M. A., CHAVE, J. & RIÉRA, B. 2002. Fast determination of light availability and leaf area index in tropical forests. Journal of Tropical Ecology 18:295302.Google Scholar
DIAL, R. J., ELLWOOD, M. D. F., TURNER, E. C. & FOSTER, W. A. 2006. Arthropod abundance, canopy structure, and microclimate in a Bornean lowland tropical rain forest. Biotropica 38:643652.Google Scholar
DIETZ, J., HÖLSCHER, D., LEUSCHNER, C., MALIK, A. & AMIR, M. 2007. Forest structure as influenced by different types of community forestry in a lower montane rainforest of Central Sulawesi, Indonesia. Pp. 133148 in Tscharntke, T., Leuschner, C.Guhardja, E., Zeller, M. & Bidin, A. (eds.). The stability of tropical rainforest margins, linking ecological, economic and social constraints of land use and conservation. Springer, Berlin.Google Scholar
DUFRÊNE, E. & BRÉDA, N. 1995. Estimation of deciduous forest leaf area index using direct and indirect methods. Oecologia 104:156162.Google Scholar
EWEL, J. 1980. Tropical succession: manifold routes to maturity. Biotropica 12:27.CrossRefGoogle Scholar
FALLS, J. B. 1981. Mapping territories with playback: an accurate census method for songbirds. Studies in Avian Biology 6:8691.Google Scholar
FRAZER, G. W., CANHAM, C. D. & LERTZMAN, K. P. 1999. Gap Light Analyzer (GLA). Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs. Users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York. 36 pp.Google Scholar
GRADWOHL, J. & GREENBERG, R. 1982. The effect of a single species of avian predator on the arthropods of aerial leaf litter. Ecology 63:581583.Google Scholar
HOLL, K. D., LOIK, M. E., LIN, E. H. V. & SAMUELS, I. A. 2000. Tropical montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restoration Ecology 8:339349.Google Scholar
JONCKHEERE, I., NACKAERTS, K., MUYS, B. & COPPIN, P. 2005. Assessment of automatic gap fraction estimation of forests from digital hemispherical photography. Agricultural and Forest Meteorology 132:96114.CrossRefGoogle Scholar
KABAKOFF, R. P. & CHAZDON, R. L. 1996. Effects of canopy species dominance on understorey light availability in low-elevation secondary forest stands in Costa Rica. Journal of Tropical Ecology 12:779788.Google Scholar
LEVIN, R. 1996. Song behaviour and reproductive strategies in a duetting wren, Thryothorus nigricapillus: I. Removal experiments. Animal Behaviour 52:10931106.Google Scholar
LIEBERMAN, D. & LIEBERMAN, M. 1987. Forest tree growth and dynamics at La Selva, Costa Rica (1969–1982). Journal of Tropical Ecology 3:347358.Google Scholar
LIEBERMAN, S. & DOCK, C. F. 1982. Analysis of the leaf litter arthropod fauna of lowland tropical evergreen forest site (La Selva, Costa Rica). Revista de Biología Tropical 30:2734.Google Scholar
LIMA, S. L. 1998. Stress and decision making under the risk of predation: recent developments from behavioral, reproductive and ecological perspectives. Advances in the Study of Behavior 27:215290.CrossRefGoogle Scholar
MANN, N. I., DINGESS, K. A., BARKER, F. K., GRAVES, J. A. & SLATER, P. J. B. 2009. A comparative study of song form and duetting in neotropical Thryothorus wrens. Behaviour 146:143.Google Scholar
MARSHALL, M. R. & COOPER, R. J. 2004. Territory size of a migratory songbird in response to caterpillar density and foliage structure. Ecology 85:432445.Google Scholar
MCDADE, L. A. & HARTSHORN, G. S. 1994. La Selva Biological Station. Pp. 618 in McDade, L., Bawa, K. S., Hespenheide, H. & Hartshorn, G. S. (eds.). La Selva: ecology and natural history of a neotropical rain forest. The University of Chicago Press, Chicago. 486 pp.Google Scholar
MORTON, E. S., DERRICKSON, K. C. & STUTCHBURY, B. J. 2000. Territory switching behavior in a sedentary tropical passerine, the Dusky Antbird (Cercomacra tyrannina). Behavioral Ecology 11:648653.Google Scholar
PASINELLI, G. 2000. Oaks (Quercus sp.) and only oaks? Relations between habitat structure and home range size of the middle spotted woodpecker (Dendrocopos medius). Biological Conservation 93:227235.Google Scholar
RENKEN, R. B. & WIGGERS, E. P. 1989. Forest characteristic related to Pileated Woodpecker territory size in Missouri. The Condor 91:642652.Google Scholar
RICH, P. M. 1990. Characterizing plant canopies with hemispherical photographs. Remote Sensing Reviews 5:1329.Google Scholar
ROBINSON, S. K. & TERBORGH, J. 1995. Interspecific aggression and habitat selection by Amazonian birds. Journal of Animal Ecology 64:111.Google Scholar
ROBINSON, W. D., BRAWN, J. D. & ROBINSON, S. K. 2000. Forest bird community structure in Central Panama: influence of spatial scale and biogeography. Ecological Monographs 70:209235.Google Scholar
SANFORD, R. L., PAABY, P., LUVALL, J. C. & PHILLIPS, E. 1994. Climate, geomorphology, and aquatic systems. Pp. 1933 in McDade, L., Bawa, K. S., Hespenheide, H. & Hartshorn, G. S. (eds.). La Selva: ecology and natural history of a neotropical rain forest. The University of Chicago Press, Chicago.Google Scholar
SAYER, E. J., SUTCLIFFE, L. M. E., ROSS, R. I. C. & TANNER, E. V. J. 2010. Arthropod abundance and diversity in a lowland tropical forest floor in Panama: role of habitat space vs. nutrient concentrations. Biotropica 42:194200.Google Scholar
SEASTEDT, T. R. & MACLEAN, S. F. 1979. Territory size and composition in relation to resource abundance in Lapland Longspurs breeding in Arctic Alaska. The Auk 96:131142.Google Scholar
SIMPSON, B. 1984. Test of habituation to song repertoires by Carolina Wrens. The Auk 101:244254.CrossRefGoogle Scholar
SKUTCH, A. F. 1960. Life histories of Central American birds II. Cooper Ornithology Society, California. 593 pp.Google Scholar
SMITH, M. & SHUGART, H. H. 1987. Territory size variation in the Ovenbird: the role of habitat structure. Ecology 68:695704.Google Scholar
STENBERG, P., LINDER, S., SMOLANDER, H. & FLOWER-ELLIS, J. 1994. Performance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some Scots pine stands. Tree Physiology 14:981995.Google Scholar
STILES, G. & SKUTCH, A. 1989. A guide to the birds of Costa Rica. Cornell University Press, Ithaca. 580 pp.Google Scholar
STOUFFER, P. C. 2007. Density, territory size, and long-term spatial dynamics of a guild of terrestrial insectivorous birds near Manaus, Brazil. The Auk 124;291307.CrossRefGoogle Scholar
STUTCHBURY, B. J. M. & MORTON, E. S. 2001. Behavioral ecology of tropical songbirds. Academic Press, London. 110 pp.Google Scholar
TERBORGH, J., ROBINSON, S. K., PARKER, T. A., MUNN, C. A. & PIERPONT, N. 1990. Structure and organization of an Amazonian forest bird community. Ecological Monographs 60:213238.CrossRefGoogle Scholar
THOMPSON, R. F., GROVES, P. M., TEYLER, T. J. & ROEMER, R. A. 1973. A dual-process theory of habituation: theory and behavior. Pp. 239271 in Peeke, H. V. S. & Herz, M. J. (eds.). Habituation I: Behavioral studies. Academic Press, New York.Google Scholar
VENEKLAAS, E. J. 1991. Litterfall and nutrient fluxes in two montane tropical rain forests, Colombia. Journal of Tropical Ecology 7:319336.CrossRefGoogle Scholar
WILSON, E. O. 1975. Sociobiology: the new synthesis. The Belknap Press of Harvard University Press, Cambridge. 697 pp.Google Scholar
WINKER, K., KLICKA, J. T. & VOELKER, G. 1996. Sexual size dimorphism in birds from southern Veracruz, Mexico. II. Thryothorus maculipectus and Henicorhina [leucosticta] prostheleuca. Journal of Field Ornithology 67:236251.Google Scholar
WIRTH, R., WEBER, B. & RYEL, R. J. 2001. Spatial and temporal variability of canopy structure in a tropical moist forest. Acta Oecologica 22:110.Google Scholar
ZAR, J. H. 1996. Biostatistical analysis. (Third edition). Prentice Hall, New Jersey. 662 pp.Google Scholar