Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T10:58:21.675Z Has data issue: false hasContentIssue false

THERMAL CONSTANTS FOR PREIMAGINAL DEVELOPMENT OF THE PARASITOID CEPHALONOMIA STEPHANODERIS BETREM (HYMENOPTERA: BETHYLEDAE)

Published online by Cambridge University Press:  31 May 2012

Francisco Infante
Affiliation:
Centro de Investigaciones Ecológicas del Sureste, Apartado Postal 36, 30700 Tapachula, Chiapas, México
Juan H. Luis
Affiliation:
Centro de Investigaciones Ecológicas del Sureste, Apartado Postal 36, 30700 Tapachula, Chiapas, México
Juan F. Barrera
Affiliation:
Centro de Investigaciones Ecológicas del Sureste, Apartado Postal 36, 30700 Tapachula, Chiapas, México
Jaime Gomez
Affiliation:
Centro de Investigaciones Ecológicas del Sureste, Apartado Postal 36, 30700 Tapachula, Chiapas, México
Alfredo Castillo
Affiliation:
Centro de Investigaciones Ecológicas del Sureste, Apartado Postal 36, 30700 Tapachula, Chiapas, México

Abstract

The relationship between temperature and rate of development is described for Cephalonomia stephanoderis Betrem, an imported ectoparasitoid of the coffee berry borer Hypothenemus hampei (Ferrari).

For all stages, development rate increased linearly with temperature between 17 and 32°C. However, at 37°C both eggs and larvae died. When the parasitoid constructed a cocoon, the lower developmental threshold (t) varied from 11.8°C in the eggs to 14.2°C for pupae; when no cocoon was constructed, it varied from 11.8°C for the eggs to 14.3°C for pupae. The lower developmental threshold, from egg to adult, was 13.7°C (with cocoon) and 13.8°C (without cocoon). As these differences were small in relation to the standard errors of the estimates, they were not considered different. Because C. stephanoderis always constructs a cocoon under field conditions, the threshold temperature of 13.7°C seems to be the most suitable.

Physiological time expressed in degree-days (DD) for the egg to adult cycle of C. stephanoderis is 252.7 ± 45.3 DD (α = 0.05) when a cocoon is constructed, and 242.5 ± 35.1 DD (α = 0.05) when pupation occurs without construction of a cocoon.

Résumé

La relation entre température et la vitesse de développement est décrite pour Cephalonomia stephanoderis Betrem, un ectoparasitoid du scolyte du grain de café Hypothenemus hampei (Ferrari).

Pour touts les stades la vitesse de développement est augmenté linéairement avec température de 17 a 32°C. Pourtant, les larves et les oeufs sont mort à 37°C. Quand le parasite a construit son cocon, la température umbrale de développement (t) a varié entre 11,8°C pour les oeufs et 14,2°C pour les pupes; quand un cocon n’est pas construit, elle varie entre 11,8°C pour les oeufs et 14,3°C pour les pupes. La température umbrale de développement d’oeuf à adulte de 13,7°C (avec cocon) et 13,8°C (sans cocon). Comme ces différences étaient très petites en considérant les erreurs étendard de les estimatives, elles n’était pas considérées significatives. Puisque dans la nature C. stephanoderis construit toujours des cocons, il paraît convenable d’utiliser une température umbrale de 13,7°C.

D’après les résultats obtenus, le temps physiologique exprimé en jour degrée (JD) pour le cicle oeuf à adulte de C. stephanoderis est de 252,7 ± 45,3 JD (α = 0.05) quand un cocon est construit et 242,5 ± 35,1 JD (α = 0.05) quand un cocon n’est pas construit.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, C.Y. 1959. The determination and significance of the base temperature in a linear heat unit system. Proceedings of the American Society for Horticultural Science 74: 430445.Google Scholar
Baker, P.S. 1984. Some aspects of the behaviour of the coffee berry borer in relation to its control in southern Mexico (Coleoptera: Scolytidae). Folia Entomológica Mexicana 61: 924.Google Scholar
Barrera, J.F., Baker, P.S., Schwarz, A., and Valenzuela, J.. 1990. Introducción de dos especies de parasitoides Africanos a México para el control biológico de la broca del cafeto Hypothenemus hampei (Ferr.) (Coleoptera: Scolytidae). Folia Entomológica Mexicana 79: 245247.Google Scholar
Barrera, J.F., Gómez, J., Infante, F., Castillo, A., and de la Rosa, W.. 1989. Biologie de Cephalonomia stephanoderis Betrem (Hymenoptera: Bethylidae) en laboratoire. I. Cycle biologique, capacité d'oviposition et émergence du fruit du caféier. Café-Cacao-Thé 33(2): 101108.Google Scholar
Borbón, O. 1989. Bioécologie d'un ravageur des baies de caféier, Hypothenemus hampei Ferr. (Coleoptera: Scolytidae) et de ses parasitoides au Togo. Unpublished thesis, Universidad Paul-Sabatier, Toulouse. 185 pp.Google Scholar
Cambell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. Journal of Applied Ecology 11: 431438.CrossRefGoogle Scholar
Daniel, W. W. 1990. Bioestadística. Base para el análisis de las ciencias de la salud. Cuarta reimpresión. Editorial Limusa. 667 pp.Google Scholar
Higley, L.G., Pedigo, L.P., and Ostlie, K.R.. 1986. DEGDAY: A program for calculating degree-days, and assumptions behind the degree-day approach. Environmental Entomology 15(5): 9991016.Google Scholar
Koch, V.J.M. 1973. Abondance de Hypothenemus hampei Ferr., scolyte des graines de café, en fonction de sa plante–hote et de son parasite Cephalonomia stephanoderis Betrem, en Cote d'Ivoire. Mededelingen Landbouwhogesschool 73–16: 85 pp. Wageningen.Google Scholar
Pedigo, L.P. 1989. Entomology and Pest Management. Macmillan Publishing Company, New York, NY. 646 pp.Google Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., Schoolfield, R.M., and Coulson, R.N.. 1984. Modeling insects developmental rates: A literature review and application of a biophysical model. Annals of the Entomological Society of America 77: 208225.CrossRefGoogle Scholar
Winston, P.W., and Bates, D.H.. 1960. Saturated solutions for the control of humidity in biological research. Ecology 41(1): 232237.Google Scholar