Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T08:08:04.153Z Has data issue: false hasContentIssue false

A novel Cu(II) chemical vapor deposition precursor: Synthesis, characterization, and chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Anjana Devi
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560 012 India
J. Goswami
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560 012 India
R. Lakshmi
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560 012 India
S. A. Shivashankar
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560 012 India
S. Chandrasekaran
Affiliation:
Department of Organic Chemistry, Indian Institute of Science, Bangalore-560 012 India
Get access

Abstract

A nonfluorinated β-diketonate precursor, bis(t-butylacetoacetato)Cu(II) or Cu(tbaoac)2, was synthesized by modifying bis(dipivaloylmethanato)Cu(II) or Cu(dpm)2 for chemical vapor deposition (CVD) of copper. The complex was characterized by a variety of techniques, such as melting point determination, mass spectrometry, infraredspectroscopy, elemental analysis, thermogravimetric and differential thermal analysis, and x-ray diffraction. Cu(tbaoac)2 has a higher sublimation rate than Cu(dpm)2 over the temperature range 90–150 °C. Pyrolysis of Cu(tbaoac)2 leads to the formation of copper films at 225 °C, compared to 330 °C for Cu(dpm)2. As-deposited copper films ere highly dense, mirror-bright, adhered strongly to SiO2, and showed a resistivity of less than 2.9 μΩ-cm at a thickness as low as 1300 Å. A possible mechanism for the decomposition of the ligand tbaoac has been proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chemical Vapor Deposition: Principles and Applications, edited by Hitchman, M. L. and Jensen, K. F. (Academic Press, New York, 1993).Google Scholar
2.Handbook of Chemical Vapor Deposition, edited by Pierson, H. O. (Noyes Publications, Park Ridge, NJ, 1992).Google Scholar
3.Stringfellow, G. B., Organometallic Vapor Phase Epitaxy: Theory and Practice (Academic Press, San Diego, CA, 1989).Google Scholar
4.The Chemistry of Metal CVD, edited by Kodas, T. and Hampden-Smith, Mark J. (VCH Publishers Inc., Weinheim, Germany, 1994).CrossRefGoogle Scholar
5.Thin Film Processes II, edited by Vossen, J. L. and Kern, W. (Academic Press, Inc., Boston, 1991).Google Scholar
6.Oda, S., Zama, H., and Yamamoto, S., J. Cryst. Growth 145, 232 (1994).CrossRefGoogle Scholar
7.Warren, C. H., Seshu, B. D., and Cheng, H. P., Chem. Mater. 6, 1955 (1994).CrossRefGoogle Scholar
8.Park, H. S., Mokhtari, M., and Roesky, H. W., Chem. Vap. Dep. 2, 135 (1996).CrossRefGoogle Scholar
9.Dubois, L. H. and Zegarski, B. R., J. Electrochem. Soc. 139, 3295 (1992).CrossRefGoogle Scholar
10.Awaya, N. and Arita, Y., Jpn. J. Appl. Phys. 32, 3915 (1993).Google Scholar
11.Chen, H. P. and Seshu, B. D., J. Am. Ceram. Soc. 77, 1799 (1994).Google Scholar
12.Kimura, T., Yamauchi, H., Machida, H., Kokubun, H., and Yamada, M., Jpn. J. Appl. Phys. 33, 5119 (1994).CrossRefGoogle Scholar
13.Dahmen, K-H. and Gerfin, T., Prog. Cryst. Growth and Charact. 27, 117 (1993).CrossRefGoogle Scholar
14.Hannapel, V. A. C., van Corbach, H. D., Fransen, T., and Gellings, P. J., Thin Solid Films 230, 138 (1993).CrossRefGoogle Scholar
15.Shin, H-K., Chi, K-M., Hampden-Smith, M. J., Kodas, T. T., Farr, J. D., and Paffett, M., Adv. Mater. 3, 246 (1991).Google Scholar
16.Kaloyeros, A. E. and Michael, A. F., MRS Bull. 18, 22 (1993).CrossRefGoogle Scholar
17.Murarka, S. P. and Hymes, S. W., CRC Crit. Rev. Solid State Mater. Sci. 20, 87 (1995).CrossRefGoogle Scholar
18.Ohmi, T. and Tsubouchi, K., Solid State Technol. 35, 47 (1992).Google Scholar
19.Kim, D., Wentorf, R. H., and Gill, W. N., J. Electrochem. Soc. 140, 3273 (1993).CrossRefGoogle Scholar
20.Harper, J. M. E., Colgan, E. G., Hu, C-K., Hummel, J. P., Buchwalter, L. P., and Uzoh, C. E., MRS Bull. Aug., 23 (1994).CrossRefGoogle Scholar
21.The Chemistry of Metal CVD, edited by Kodas, T. T. and Hampden-Smith, M. J. (VCH Publishers Inc., Weinheim, Germany, 1994), Chap. 4, p. 175.CrossRefGoogle Scholar
22.Pauleau, Y. and Fasasi, A. Y., Chem. Mater. 3, 45 (1991).CrossRefGoogle Scholar
23.Temple, D. and Reisman, A., J. Electrochem. Soc. 136, 3525 (1989).CrossRefGoogle Scholar
24.Hampden-Smith, M. J. and Kodas, T. T., Polyhedron 14, 699 (1995).CrossRefGoogle Scholar
25.Reynolds, S. K., Smart, C. J., and Baran, E. F., Appl. Phys. Lett. 59, 2332 (1991).Google Scholar
26.Stumm, T. H. and van den Bergh, H., Mater. Sci. Eng. B23, 48 (1994).CrossRefGoogle Scholar
27.Goswami, J., Ph.D. Thesis, Indian Institute of Science, Bangalore (1995).Google Scholar
28.Patnaik, S., Row, T. N. Guru, Lakshmi, R., Devi, Anjana, Goswami, J., Shivashankar, S. A., Chandrasekaran, S., and Robinson, W. T., Acta Crystallogr. C52, 891 (1996).Google Scholar
29.Eisentraut, K. J. and Sievers, R. E., J. Inorg. Nucl. Chem. 29, 1931 (1967).CrossRefGoogle Scholar
30.Murarka, S. P., Gutmann, R. J., Kaloyeros, A. E., and Lanford, W. A., Thin Solid Films 236, 257 (1993).CrossRefGoogle Scholar
31.Murarka, S. P. and Hymes, S. W., CRC Crit. Rev. Solid State Mater. Sci. 20, 87 (1995).CrossRefGoogle Scholar
32.Li, J. and Mayer, J. W., MRS Bull. 18, 52 (1993).CrossRefGoogle Scholar
33.Ramaswamy, Geetha, Raychaudhuri, A. K., Goswami, J., and Shivashankar, S. A., J. Phys. D. (in press).Google Scholar
34.Intramolecular Diels-Alder and Alder-Ene Reactions, edited by Taber, D. (Springer, New York, 1984), p. 61.CrossRefGoogle Scholar
35.Ireland, R. and Willand, M., J. Am. Chem. Soc. 98, 2868 (1976).CrossRefGoogle Scholar