Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T22:08:16.569Z Has data issue: false hasContentIssue false

Effects of the Carbon Coating and the Surface Oxide Layer in Electron Probe Microanalysis

Published online by Cambridge University Press:  31 August 2010

Silvina P. Limandri
Affiliation:
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Córdoba, Argentina
Alejo C. Carreras
Affiliation:
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Córdoba, Argentina
Jorge C. Trincavelli*
Affiliation:
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Córdoba, Argentina
*
Corresponding author. E-mail: trincavelli@famaf.unc.edu.ar
Get access

Abstract

Effects related with the attenuation and deflection suffered by an electron beam when it passes through a carbon conductive coating and an oxide film layer on the surface of bulk samples are studied by Monte Carlo simulations and energy dispersive spectroscopy with electron excitation. Analytical expressions are provided for the primary beam energy and intensity losses and for the deflection of the incident electrons in both layers, in terms of the incidence energy, the film mass thicknesses, and the atomic number of the oxidized element. From these analytical expressions, suitable corrections are proposed for the models used to describe the X-ray spectrum of the substrate, including also the contribution of the X-rays generated in the oxide and conductive films and the characteristic X-ray absorption occurring in those layers. The corrections are implemented in a software program for spectral analysis based on a routine of parameter refinement, and their influence is studied separately in experimental spectra of single-element standards measured at different excitation energies. Estimates for the layer thicknesses are also obtained from the spectral fitting procedure.

Type
Microanalysis Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, M.R., Thompson, G.E., Zhou, X., Beamson, G. & Fairley, N. (2002). Quantification of oxide film thickness at the surface of aluminium using XPS. Surf Interface Anal 34, 485489.CrossRefGoogle Scholar
Bastin, G.F., Dijkstra, J.M., Heijligers, H.J.M. & Klepper, D. (1998). In-depth profiling with the electron probe microanalyzer. In Proceedings EMAS'98 3rd Regional Workshop, Llovet, X., Merlet, C. & Salvat, F. (Eds.), pp. 2555. Barcelona: Universitat de Barcelona.Google Scholar
Bastin, G.F. & Heijligers, H.J.M. (2000a). A systematic database of thin-film measurements by EPMA part I—Aluminum films. X-Ray Spectrom 29, 212238.3.0.CO;2-K>CrossRefGoogle Scholar
Bastin, G.F. & Heijligers, H.J.M. (2000b). A systematic database of thin-film measurements by EPMA part II—Palladium films. X-Ray Spectrom 29, 373397.3.0.CO;2-S>CrossRefGoogle Scholar
Bethe, H.A. (1930). Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann Phys 397, 325400.CrossRefGoogle Scholar
Bonetto, R., Castellano, G. & Trincavelli, J. (2001). Optimization of parameters in electron probe microanalysis. X-Ray Spectrom 30, 313319.CrossRefGoogle Scholar
Campos, C.S., Coleoni, E.A., Trincavelli, J.C., Kaschny, J., Hubbler, J., Soares, M.R.F. & Vasconcellos, M.A.Z. (2001). Metallic thin film thickness determination using electron probe microanalysis. X-Ray Spectrom 30, 253259.CrossRefGoogle Scholar
Campos, C.S., Vasconcellos, M.A.Z., Llovet, X. & Salvat, F. (2002). Measurements of L-shell X-ray production cross sections of W, Pt, and Au by 10–30-keV electrons. Phys Rev A 66, 012719.CrossRefGoogle Scholar
Chu, W., Meyer, J. & Nicolet, M. (1978). Backscattering Spectrometry. New York: Academic Press.CrossRefGoogle Scholar
Demortier, G. & Rubalcaba Sil, J.L. (1996). Differential PIXE analysis of Mesoamerican jewelry items. J Nucl Instrum Meth Phys Res B 118, 352358.CrossRefGoogle Scholar
Evans, R.D. (1955). The Atomic Nucleus. New York: McGraw-Hill.Google Scholar
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Romig, A.D. Jr., Lyman, C.E., Fiori, C. & Lifshin, E. (1994). Scanning Electron Microscopy and X-Ray Microanalysis, 2nd ed.New York: Plenum Press.Google Scholar
Hoffmann, S. (1998). Sputter depth profile analysis of interfaces. Rep Prog Phys 61, 827888.CrossRefGoogle Scholar
Joy, D.C. & Luo, S. (1989). An empirical stopping power relationship for low-energy electrons. Scanning 11, 176180.CrossRefGoogle Scholar
Kato, T. (2007). Monte Carlo study of quantitative electron probe microanalysis of monazite with a coating film: Comparison of 25 nm carbon and 10 nm gold at E 0 = 15 and 25 keV. Geostand Geoanal Res 31, 8994.CrossRefGoogle Scholar
Kolbe, M., Beckhoff, B., Krumrey, M. & Ulm, G. (2005). Thickness determination for Cu and Ni nanolayers: Comparison of completely reference-free fundamental parameter-based X-ray fluorescence analysis and X-ray reflectometry. Spectrochim Acta B 60, 505510.CrossRefGoogle Scholar
Kyser, D.F. & Murata, K. (1974). Quantitative electron microprobe analysis of thin films on substrates. IBM J Res Dev 18, 352363.CrossRefGoogle Scholar
Limandri, S., Trincavelli, J., Bonetto, R. & Carreras, A. (2008). Structure of the Pb, Bi, Th and U M X-ray spectra. Phys Rev A 78, 022518.CrossRefGoogle Scholar
Liu, C., Erdmann, J. & Macrander, A. (1999). In situ spectroscopic ellipsometry as a surface-sensitive tool to probe thin film growth. Thin Solid Films 355, 4148.CrossRefGoogle Scholar
Merlet, C. (1995). A new quantitative procedure for stratified samples in EPMA. In Proceedings 29th Annual Conference of the Microbeam Analysis Society, Etz, E.S. (Ed.), p. 203.New York: VHC Publishers.Google Scholar
Osada, Y. (2005). Monte Carlo study of quantitative EPMA analysis of a nonconducting sample with a coating film. X-Ray Spectrom 34, 96100.CrossRefGoogle Scholar
Packwood, R. & Brown, J. (1981). A Gaussian expression to describe ϕ(ρz) curves for quantitative electron probe microanalysis. X-Ray Spectrom 10, 138146.CrossRefGoogle Scholar
Pouchou, J.L. & Pichoir, F. (1990). Surface film X-ray microanalysis. Scanning 12, 212224.CrossRefGoogle Scholar
Salvat, F., Fernández-Varea, J. & Sempau, J. (2003). PENELOPE—A code system for Monte Carlo simulation of electron and photon transport. Issy-les-Molineaux, France: OECD/NEA Data Bank.Google Scholar
Suzuki, E. (2002). High-resolution scanning electron microscopy of immunogold-labelled cells by the use of thin plasma coating of osmium. J Microsc 208, 153157.CrossRefGoogle ScholarPubMed
Terada, S., Murakami, H. & Nishihagi, K. (2001). Thickness and density measurement for new materials with combined X-ray technique. SEMICON Europa 2001, Munich, April 23.CrossRefGoogle Scholar
Thomsen-Schmidt, P., Hasche, K., Ulm, G., Herrmann, K., Krumrey, M., Ade, G., Stümpel, J., Busch, I., Schädlich, S., Schindler, A., Frank, W., Hirsch, D., Procop, M. & Beck, U. (2004). Realisation and metrological characterisation of thickness standards below 100 nm. Appl Phys A 78, 645649.CrossRefGoogle Scholar
Trincavelli, J., Limandri, S., Carreras, A. & Bonetto, R. (2008). Experimental method to determine the absolute efficiency curve of a wavelength dispersive spectrometer. Microsc Microanal 14, 306314.CrossRefGoogle Scholar
Trincavelli, J. & Van Grieken, R. (1994). Peak-to-background method for standardless electron microprobe analysis of particles. X-Ray Spectrom 23, 254260.CrossRefGoogle Scholar
Yakowitz, H. & Newbury, D.E. (1976). A simple analytical method for thin film analysis with massive pure element standards. In Proceedings 9th Annual Scanning Electron Microscope Symposium, 1, pp. 151152. Chicago: IITRI.Google Scholar