Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T12:07:28.765Z Has data issue: false hasContentIssue false

Phosphonate Modified Titanium Alkoxides: Intermediates in the Sol-Gel Processing of Novel Titania / Phosphonate Inorganic-Organic Hybrids

Published online by Cambridge University Press:  01 February 2011

P. Hubert Mutin
Affiliation:
UMRCNRS 5637, Université de Montpellier 2, Pl. E. Bataillon 34095 Montpellier Cedex 5, France
Michael Mehring
Affiliation:
Universität Dortmund, Otto Hahn Str. 6 44227 Dortmund, Germany
Gilles Guerrero
Affiliation:
UMRCNRS 5637, Université de Montpellier 2, Pl. E. Bataillon 34095 Montpellier Cedex 5, France
André Vioux
Affiliation:
UMRCNRS 5637, Université de Montpellier 2, Pl. E. Bataillon 34095 Montpellier Cedex 5, France
Get access

Abstract

We are currently developing a 2-step sol-gel route to metal oxide / phosphonate hybrid materials, based on the non-hydrolytic condensation of a metal alkoxide with a phosphonic acid, followed by hydrolysis / condensation of the remaining alkoxy groups. Several molecular intermediates in this process were obtained by reaction of Ti(OiPr)4 with phosphonic acids RPO3H2(R = Me, Ph, tBu):[Ti4(OiPr)2(tBuPO3)]4(1),[Ti43-O)(OiPr)5(μ-OiPr)3(PhPO3)3]·DMSO (2), [Ti43-O)(OiPr)5(μ-OiPr)3(MePO3)3]·DMSO (3), [Ti43-O)(OiPr)5(μ-OiPr)3(tBuPO3)3]·DMSO (4), which were characterized by single crystal X-ray structure analysis and/or NMR spectroscopy. These compounds give information on the sol-gel chemistry in our process and are structural models for the final hybrid materials. In all cases the non-hydrolytic condensation is complete, and the phosphoryl oxygen is coordinated to a titanium atom. In addition, these clusters are soluble in common organic solvents and contain hydrolyzable alkoxy groups, which make them potential building blocks in the sol gel process. Accordingly, the use of cluster 2 as a single source precursor was investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mutin, P. H., Delenne, C., Medoukali, D., Corriu, R., Vioux, A., Mat. Res. Soc. Symp. Proc., vol 519, ed. Laine, R. M., Sanchez, C., Brinker, C. J., Giannelis, E., (Materials Research Society, 1998) pp. 345350.Google Scholar
2. Livage, J., Barboux, P., Vandenborre, M. T., Schmutz, C., Taulelle, F., J. Non-Cryst. Solids,, 147&148, 18 (1992).Google Scholar
3. Medoukali, D., Mutin, P. H., Vioux, A., J. Mater. Chem.,, 9, 2553 (1999).Google Scholar
4. Lugmair, C. G., Tilley, T. D., Inorg. Chem.,, 37, 1821 (1998).Google Scholar
5. Guerrero, G., Mutin, P. H., Vioux, A., Chem. Mater.,, 12, 1268 (2000).Google Scholar
6. Errington, J. R., Ridland, J., Willett, K. J., Clegg, W., Coxall, R. A., Heath, S. L., J. Organomet. Chem.,, 550, 473 (1998).Google Scholar
7. Walawalkar, M. G., Horchler, S., Dietrich, S., Chakraborty, D., Roesky, H. W., Schafer, M., Schmidt, H. G., Sheldrick, G. M., Murugavel, R., Organometallics,, 17, 2865 (1998).Google Scholar
8. Mehring, M., Guerrero, G., Dahan, F., Mutin, P. H., Vioux, A., Inorg. Chem., (2000) (In press).Google Scholar
9. Guerrero, G., Mehring, M., Mutin, P. H., Dahan, F., Vioux, A., J. Chem. Soc., Dalton Trans.,, 1537 (1999).Google Scholar