Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T07:24:38.115Z Has data issue: false hasContentIssue false

Exfoliated ∼25μm Si Foil for Solar Cells with Improved Light-Trapping

Published online by Cambridge University Press:  25 February 2013

S. Saha
Affiliation:
Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78758.
E. U. Onyegam
Affiliation:
Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78758.
D. Sarkar
Affiliation:
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611.
M. M. Hilali
Affiliation:
Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78758.
R. A. Rao
Affiliation:
AstroWatt, Inc.Austin, TX 78758
L. Mathew
Affiliation:
AstroWatt, Inc.Austin, TX 78758
D. Jawarani
Affiliation:
AstroWatt, Inc.Austin, TX 78758
D. Xu
Affiliation:
AstroWatt, Inc.Austin, TX 78758
R. S. Smith
Affiliation:
AstroWatt, Inc.Austin, TX 78758
U. K. Das
Affiliation:
Institute of Energy Conversion, University of Delaware, Newark, DE 19716
J. G. Fossum
Affiliation:
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611.
S. K. Banerjee
Affiliation:
Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78758.
Get access

Abstract

Investigation of optical absorption in ∼25μm thick, monocrystalline silicon (Si) substrates obtained from a novel exfoliation technique is done by fabricating solar cells with single heterojunction architecture (without using intrinsic amorphous silicon layer) with diffused back junction and local back contact. The ease of process flow and the rugged and flexible nature of the substrates due to thick metal backing enables use of various light-trapping and optical absorption enhancement schemes traditionally practiced in the industry for thicker (>120μm) substrates. Optical measurement of solar cells using antireflective coating, texturing on both surfaces, and back surface dielectric/metal stack as mirror to reflect the long wavelength light from the back surface show a very low front surface reflectance of 4.6% in the broadband spectrum (300nm-1200nm). The illuminated current voltage (IV) and external quantum efficiency (EQE) measurement of such solar cell shows a high integrated current density of 34.4mA/cm2, which implies significant internal photon reflection. Our best cell with intrinsic amorphous silicon (i-a-Si) layer with only rear surface textured shows an efficiency of 14.9%. EQE data shows improved blue response and current density due to better front surface passivation. Simulations suggest that with optimized light trapping and surface passivation, such thin c-Si cells can reach efficiencies >20%.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Honsberg, C., Goodnick, S., and Bowden, S., (International Photovoltaic Reliability Workshop, Tempe, 2009) pp. 28. Google Scholar
Green, M.A., Blakers, A., Jiqun, Shi, Keller, E.M. and Wenham, SR, IEEE Trans. Electron Devices ED-31, 679683(1984).CrossRefGoogle Scholar
Tiedje, T., Yablonovitch, E., Cody, G. D., and Brooks, B. G., IEEE Trans. Electron Devices, ED-31, 711716 (1984).CrossRefGoogle Scholar
Yablonovitch, E., Cody, G. D., IEEE Trans. Electron Devices ED-29, 300305 (1982).CrossRefGoogle Scholar
Sakata, H., Tsunomura, Y., Inoue, H., Taira, S., Baba, T., Kanno, H., Kinoshita, T., Taguchi, M., and Maruyama, E., (Proc. 25th EU PVSEC, Valencia, 2010) pp. 1102–1105. Google Scholar
Brendel, R., “Thin-film crystalline silicon solar cells: Physics and Technology”, (Weinheim: Wiley-VCH, 2003) pp. 1223.CrossRefGoogle Scholar
Brendel, Rolf, Solar Energy 77, 969982 (2004).CrossRefGoogle Scholar
Hebling, C., Glunz, S. W., Schumacher, J. O., and Knobloch, J., (Proc. 14th EU PVSEC, Barcelona, 1997) pp. 2318–2321. Google Scholar
Van Nieuwenhuysen, K., Récaman Payo, M., Kuzma-Filipek, I., Van Hoeymissen, J., Van Kerschaever, E., and Poortmans, J., (Proc. 35th IEEE PVSC, Philadelphia, 2009) pp. 000933–000936. Google Scholar
Green, M.A., Basore, P. A., Chang, N., Clugston, D., Egan, R., Evans, R., Hogg, D., Jarnason, S., Keevers, M., Lasswell, P., O’Sullivan, J., Schubert, U., Turner, A., Wenham, S. R., and Young, T., Solar Energy 77, 857863 (2004).CrossRefGoogle Scholar
Mathew, L. and Jawarani, D., U.S. Patent no. 7749884 (July 6, 2010).Google Scholar
Dross, F., Milhe, A., Robbelein, J., Gordon, I., Bouchard, P., Beaucarne, G., Poortmans, J., App. Phy. A: Mat. Sc. and Proc. 89, 149152 (2007).CrossRefGoogle Scholar
Henley, F. J., (Proc. PVSC, Honolulu, 2010) pp. 001184–001192. Google Scholar
Rao, R. A., Mathew, L., Saha, S., Smith, S., Sarkar, D., Garcia, R., Stout, R., Gurmu, A., Ahn, D., Xu, D., Jawarani, D., Onyegam, E., Hilali, M., Banerjee, S. K., and Fossum, J., (Proc. EU PVSEC, Hamburg, 2011) pp. 2439–2442. Google Scholar
Rao, R. A., Mathew, L., Sarkar, D., Smith, S., Saha, S., Garcia, R., Stout, R., Gurmu, A., Ainom, M., Onyegam, E., Xu, D., Jawarani, D., Fossum, J., Banerjee, S. K., Das, U. K., Upadhyaya, A., Rohatagi, A., and Wang, Q., (Proc. 38th IEEE PVSC, Austin, 2012) pp. 001837–001840. Google Scholar
Xu, D., Ho, P. S., Rao, R. A., Mathew, L., Smith, S., Saha, S., Sarkar, D., Vaas, C., and Jawarani, D., (Proc. Reliability Physics Symposium (IRPS), Anaheim, 2012) pp. 4A3.1-4A3.7. Google Scholar
Fossum, J. G., Sarkar, D., Mathew, L., Rao, R., Jawarani, D., and Law, M. E., “Back-contact solar cells in thin crystalline silicon, (Proc. 35th IEEE PVSC, Honolulu, 2010) pp. 3131–3136. CrossRefGoogle Scholar
Law, M. E., and Cea, S. M., Computational Materials Science 12, 289308 (1998).CrossRefGoogle Scholar
Fossum, J. G., and Shibib, M. A., IEEE Trans. Electron Devices ED-28, 10181025 (1981).CrossRefGoogle Scholar
Zhao, J., Wang, A., Altermatt, P. P., Wenham, S. R., and Green, M. A., Solar Energy Mater. Solar Cells 4142, 8799 (1996).CrossRefGoogle Scholar
Cuevas, A., Basore, P. A., Giroult-Maltakowski, G., and Dubois, C., J. Appl. Phys. 80, 33703375 (1996).CrossRefGoogle Scholar
Taguchi, M., Terakawa, A., Maruyama, E., and Tanaka, M., Prog. Photovoltaics: Res. Appl. 13, 481488 (2005).CrossRefGoogle Scholar
Cuevas, A, and , D. A, Russell, , Prog. Photovoltaics: Res. Appl. 8, 603616 (2000).3.0.CO;2-M>CrossRefGoogle Scholar
Swanson, R. M., (Proc. IEEE Electron Devices Meeting, Dec. 2007) pp. 359–362. Google Scholar