Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T09:30:28.027Z Has data issue: false hasContentIssue false

Probing the Viscoelasticity of Collagen Solutions via Optical-Tweezers-Based Microrheology

Published online by Cambridge University Press:  23 May 2012

Marjan Shayegan
Affiliation:
Simon Fraser University, Department of Chemistry, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada
Nancy R. Forde
Affiliation:
Simon Fraser University, Department of Physics, 8888 University Dr., Burnaby, BC, V5A 1S6, Canada
Get access

Abstract

How the molecular structure of proteins in solution correlates with the mechanical properties of the solution at different length scales is not known. Using optical-tweezers based microrheology, we investigate a key physical property, viscoelasticity, of collagen solutions. To do this, we measure short-range thermal fluctuations of probe particles to obtain elastic and viscous moduli of their surrounding medium, and validate our measurement and analysis techniques using the previously studied system of polyethylene oxide. Probing the concentration dependence of viscoelasticity, we find that collagen solutions exhibit elasticity of comparable strength to viscosity when the concentration reaches ∼5 mg/ml. We also find that the presence of telopeptides alters the viscoelasticity of collagen solutions, particularly at high frequencies

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Glowacki, J. and Mizuno, S., Biopolymers, 89, 338 (2007).10.1002/bip.20871Google Scholar
2. Fratzl, P., Collagen structure and mechanics (Springer, 2008).Google Scholar
3. Myllyharju, J. and Kivirikko, K. I., Ann. Med., 33, 721 (2001).10.3109/07853890109002055Google Scholar
4. Gautieri, A., Uzel, S., Vesentini, S., Redaelli, A., and Buehler, M.J., Biophys. J., 97, 857 (2009).10.1016/j.bpj.2009.04.059Google Scholar
5. Lai, S. K., Wang, Y. Y., Wirtz, D., and Hanes, J., Adv. Drug Deliv. Rev., 61, 86 (2009).10.1016/j.addr.2008.09.012Google Scholar
6. Waigh, T. A., Rep. Prog. Phys., 68, 685 (2005).10.1088/0034-4885/68/3/R04Google Scholar
7. Neuman, K. C. and Nagy, A., Nature Methods, 5, 491 (2008).10.1038/nmeth.1218Google Scholar
8. Engvall, E. and Perlmann, P., J. Immunol., 109, 129 (1972).Google Scholar
9. Han, S., Makareeva, E., Kuznetsova, N. V., DeRidder, A. M., Sutter, M. B., Losert, W., Phillips, C. L., Visse, R., Nagase, H., and Leikin, S., J. Biol. Chem, 285, 22276 (2010).10.1074/jbc.M110.102079Google Scholar
10. Dasgupta, B. R., Tee, S. Y., Crocker, J. C., Frisken, B. J., and Weitz, D. A., Phys. Rev. E, 65, 051505 (2002).10.1103/PhysRevE.65.051505Google Scholar
11. van der Horst, A. and Forde, N. R., Opt. Express, 16, 20987 (2008).10.1364/OE.16.020987Google Scholar
12. Addas, K. M., Schmidt, C. F., and Tang, J. X., Phys. Rev. E, 70, 021503 (2004).10.1103/PhysRevE.70.021503Google Scholar
13. Li, Y., Asadi, A., Monroe, M. R., and Douglas, E. P., Mater. Sci. Eng. C, 29, 1643 (2009).10.1016/j.msec.2009.01.001Google Scholar
14. Gelman, R. A., Poppke, D. C., and Piez, K. A., J. Biol. Chem., 254, 11741 (1979).Google Scholar