Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T13:38:49.401Z Has data issue: false hasContentIssue false

Solution and Solid State NMR Studies of the Structure and Dynamics of C60 and C70

Published online by Cambridge University Press:  28 February 2011

R. D. Johnson
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
C. S. Yannoni
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
J. Salem
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
G. Meijer
Affiliation:
Dept. of Molecular and Laser Physics, Catholic University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, the Netherlands.
D. S. Bethune
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
Get access

Abstract

We have investigated the structure and dynamics of C60 and C70 with 13C NMR spectroscopy. In solution, high-resolution spectra reveal that C60 has a single resonance at 143 ppm, indicating a strained, aromatic system with high symmetry. This is strong evidence for a C60 “soccer ball” geometry. A 2D NMR INADEQUATE experiment on 13C-enriched C70 reveals the bonding connectivity to be a linear string, in firm support of the proposed “rugby ball” structure with D5h symmetry, and furnishes resonance assignments. Solid state NMR spectra of C60 at ambient temperatures yield a narrow resonance, indicative of rapid molecular reorientation. Variable temperature T1 measurements show that the rotational correlation time is ∼ 10−9s at 230 K. At 77 K, this time increases to more than 1 ms, and the 13C NMR spectrum of C60 is a powder pattern due to chemical shift anisotropy (tensor components 220, 186, 40 ppm). At intermediate temperatures a narrow peak is superimposed on the powder pattern, suggesting a distribution of barriers to molecular motion in the sample, or the presence of an additional phase in the solid state. A Carr-Purcell dipolar experiment on C60 in the solid state allows the first precise determination of the C60 bond lengths: 1.45 and 1.40Å.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 (present address: Dept. of Molecular and Laser Physics, Catholic University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, the Netherlands.).Google Scholar
2 Fuller, R. B., Ideas and Integrities, (Collier Books, New York, 1963).Google Scholar
3 Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162163 (1985).CrossRefGoogle Scholar
4 Krätschmer, W., Fostiropoulos, K., and Huffman, D. R., Chem. Phys. Lett. 170, 167 (1990).CrossRefGoogle Scholar
5 Krätschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature 347, 354 (1990).CrossRefGoogle Scholar
6 Taylor, R., Hare, J. P., Abdul-Sada, A. K., and Kroto, H. W., J. Chem. Soc., Chem. Comm. 20, 1423 (1990).CrossRefGoogle Scholar
7 Meijer, G. and Bethune, D. S., J. Chem. Phys. 93, 7800 (1990).CrossRefGoogle Scholar
8 Heath, J. R., O’Brien, S. C., Zhang, Q., Liu, Y., Curl, R. F., Kroto, H. W., Zhang, Q., Tittel, F. K., and Smalley, R. E., J. Am. Chem. Soc. 107, 7779 (1985).CrossRefGoogle Scholar
9 Kalinowski, H., Berger, S., and Braun, S., (Wiley and Sons, New York, 1988).Google Scholar
10 Fyfe, C., Solid State NMR for Chemists, (CFC Press, Guelph, Ontario, 1983).Google Scholar
11 (Meijer, G., et al., elsewhere in these Proceedings.).Google Scholar
12 Johnson, R. D., Meijer, G., and Bethune, D. S., J. Am. Chem. Soc. 112, 8983 (1990).CrossRefGoogle Scholar
13 Krätschmer, W., Sorg, N., and Huffman, D. R., Surf. Sci. 156, 814 (1985).CrossRefGoogle Scholar
14 Haufler, R.E., Conceicao, J., Chibante, L.P.F., Chai, Y., Byrne, N.E., Flanagan, S., Haley, M.M., O’Brien, S.C., Pan, C., Xiao, Z., Billups, W.E., Ciufolini, M.A., Hauge, R.H., Margrave, J.L., Wilson, L.J., Curl, R.F., and Smalley, R.E., J. Phys. Chem. 94, 8634 (1990).CrossRefGoogle Scholar
15 Bax, A., Freeman, R., and Kempsell, S.P., J. Am. Chem. Soc. 102, 4849 (1980).CrossRefGoogle Scholar
16 Bax, A., Freeman, R., Frenkiel, T.A., and Levitt, M.H., J. Magn. Reson. 43, 478 (1981).Google Scholar
17 Mareci, T. H. and Freeman, R., J. Magn. Reson. 48, 158163 (1982).Google Scholar
18 Yannoni, C. S., Johnson, R. D., Meijer, G., Bethune, D. S., and Salem, J. R., J. Phys. Chem. 95, 910 (1991).CrossRefGoogle Scholar
19 (Tycko, R., Haddon, R. C., Dabbagh, G., Glarum, S. H., Douglass, D. C., Mujsce, A. M., J. Phys. Chem. (in press)).Google Scholar
20 Veeman, W.S., Progress in Nuclear Magnetic Resonance Spectroscopy, (Pergamon Press, Oxford, 1984), Vol. 16, pp. 193237.Google Scholar
21 Mehring, M., High Resolution NMR in Solids, 2nd edition, (Springer Verlag, Berlin, 1983), Vol. 16, p. chap. 7.CrossRefGoogle Scholar
22 Shiau, W-I., Duesler, E. N., Paul, I. C., Curtin, D. Y., Blann, W. G., and Fyfe, C. A., J. Am. Chem. Soc. 102, 45464548 (1980).CrossRefGoogle Scholar
23 Garroway, A.N., Ritchey, W.M., and Moniz, W.B., Macromolecules 15, 1051 (1982).CrossRefGoogle Scholar
24 Wilson, R. J., Meijer, G., Bethune, D. S., Johnson, R. D., Chambliss, D. D., de Vries, M. S., Hunziker, H. E., and Wendt, H. R., Nature 348, 621622 (1990).CrossRefGoogle Scholar
25 Wragg, J. L., Chamberlain, J. E., White, H. W., Krätschmer, W., and Huffman, D. R., Nature 348, 623624 (1990).CrossRefGoogle Scholar
26 Pake, G. E., J. Chem. Phys. 16, 327 (1948).CrossRefGoogle Scholar
27 Yannoni, C. S. and Kendrick, R. D., J. Chem. Phys. 74, 747 (1981).CrossRefGoogle Scholar
28 Gutowsky, H. S. and Pake, G. E., J. Chem. Phys. 18, 162 (1950).CrossRefGoogle Scholar
29 Carr, H. Y. and Purcell, E. M., Phys. Rev. 94, 630 (1954).CrossRefGoogle Scholar
30 Meiboom, S. and Gill, D., Rev. Sci. Instrum. 29, 688 (1958).CrossRefGoogle Scholar
31 Engelsberg, M. and Yannoni, C. S., J. Magn. Res. 88, 393 (1990).Google Scholar
32 Feng, J., Li, J., Wang, Z., and Werner, M. C., Intl. J. Quant. Chem. 37, 599 (1990).CrossRefGoogle Scholar
33 Shibuya, T.-I. and Yoshitani, M., Chem. Phys. Lett. 137, 1316 (1987).CrossRefGoogle Scholar