Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-17T10:46:26.987Z Has data issue: false hasContentIssue false

Some Physical Properties of Suspendable Superconducting 123-Ag Composites

Published online by Cambridge University Press:  28 February 2011

C. Y. Huang
Affiliation:
Lockheed Palo Alto Research Laboratory, Palo Alto, CA 94304
H. H. Tai
Affiliation:
Lockheed Palo Alto Research Laboratory, Palo Alto, CA 94304
Y. D. Yao
Affiliation:
Institute of Physics, Academia Sinica, Taipei, TAIWAN
T. J. Li
Affiliation:
Institute of Physics, Academia Sinica, Taipei, TAIWAN
M. K. Wu
Affiliation:
Dept. of Physics, Tsinghua University, Hsinchu, TAIWAN
Get access

Abstract

We have measured the M-H hysteresis loops of n YBa2Cu3Oy: Ag (n = 3,5, and 7), and 3RBa2Cu3Oy:Ag (R = rare earth) as a function of temperature. We have found that the residual magnetization and, hence, pinning, is strong and is independent of n and R, but dependent on the metallurgy. The giant creep rates have been measured and are greater than those of pure 123 samples. Scanning electron microscopy and polarized light microscopy have shown that the presence of silver gives rise to the growth of large grains (~1 mm) in the 123-Ag samples. The field dependence of the critical current density is not strong at high field. We have also measured the resistance in field up to 200 kOe. The resistance remains zero even at 80 K and 200 kOe. The field dependence of the superconducting transition is discussed in terms of phase slippage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Huang, C. Y., Shapira, Y., McNiff, E. J. Jr. Peters, P. N., Schwartz, B. B., Wu, M. K., Shull, R. D., and Chiang, C. K., Mod. Phys. Lett. B2 869 (1988)Google Scholar
2 Huang, C. Y., Peters, P. N., Schwartz, B. B., Shapira, Y., and Wu, M. K., Mod. Phys. Lett. B2 1027 (1988)Google Scholar
3 Politis, C. and Sutban, F., Mod. Phys. Lett. B2 1119 (1988)Google Scholar
4 Jin, S., Sherwood, R. C., Gyorgy, E. M., Tiefel, T. H., van Dover, R. B., Fastnach, R. A., and Davis, M. E., Appl. Phys. Lett. 54 584 (1989)Google Scholar
5 Harter, W. G., Herman, A. M., and Shend, Z. Z., Appl. Phys. Lett. 53 1119 (1988)Google Scholar
6 Adler, R. J. and Anderson, W. E., Appl. Phys. Lett. 53 2346 (1988)Google Scholar
7 Campbell, A. M., and Evetts, J. E., Adv. Phys. 21199 (1972) and references therein.Google Scholar
8 Dew-Hughes, D., Phil. Mag. 30 293 (1974), and references therein.Google Scholar
9 Yamafuji, K., Proc. Int. Symposium on Flux Pinning, Fukuoka p. 18 (1985)Google Scholar
10 Wu, M. K., Higgins, C. A., Leong, P. T., Chou, H., Loo, B. H., Curreri, P. A., Peters, P. N., Sisk, R. C., Huang, C. Y., and Shapira, Y., to be published.Google Scholar
11 Bean, C. P., Rev. Mod. Phys. 36 31 (1964)Google Scholar
12 Dew-Hughes, D., IEEE Tians. Mag. MAG–17 561 (1981); Phil. Mag. 55 459 (1987)Google Scholar
13 Wrthamer, N. R., Helfand, E., and Hohenberg, P. C., Phys. Rev. 147 295 (1966)Google Scholar
14 Tinkham, M. K., Phys. Rev. Lett. 61 1658 (1988)Google Scholar
15 Ambegaokar, V. and Halperin, B. L., Phys. Rev. Lett. 22 1364 (1969)Google Scholar