Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T05:09:53.362Z Has data issue: false hasContentIssue false

Plasma Emission Spectroscopy and Chemical Analysis of Amorphous Hydrogenated Carbon

Published online by Cambridge University Press:  28 February 2011

Chang Soo Park
Affiliation:
University of Missouri-St.Louis, Department of Physics, St.Louis, MO 631212
Jeffrey R. Bodart
Affiliation:
University of Missouri-St.Louis, Department of Physics, St.Louis, MO 631212
He-Xiang Han
Affiliation:
Permanent Address: Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
Bernard J. Feldman
Affiliation:
University of Missouri-St.Louis, Department of Physics, St.Louis, MO 631212
Get access

Abstract

The emission spectra of various hydrocarbon plasmas used in the growth of amorphous hydrogenated carbon (α-C:H) thin films have been measured.The presence of CH, H, H2, and C2 species in the plasma have been observed.The chemical composition of the α-C:H films was determined by combustion analysis and shows roughly equal atomic concentrations of H and C and a surprising large concentration of 0.The plasma emission spectra and chemical composition results can be partially understood in terms of relative bond strengths of the different molecules involved, and these results give some insights into the growth kinetics of α-C:H thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matsuda, A., Nakagawa, K., Tanaka, K., Matsumura, M., Yamasaki, S., Okushi, H., and Iizima, S., J.of Non-Crystalline Solids 35/36, 183 (1980); A.Matsuda and K.Tanaka, Thin Solid Films 92, 171 (1982).Google Scholar
2. Griffith, R.W., Kampas, F.J., Vanier, P.E., and Hirch, M.O., J.Non-Crystalline Solids 35/36, 391 (1980); F.J.Kampas and R.W.Griffith, J.Appl.Phys.52, 1285 (1981).CrossRefGoogle Scholar
3. Taniguchi, M., Hirose, M., Hamasaki, T., and Osaka, Y., Appl.Phys.Lett. 37, 787 (1980).Google Scholar
4. Street, R.A., Knights, J.C., and Biegelsen, D.K., Phys.Rev.B 18, 1880 (1978).CrossRefGoogle Scholar
5. Bodart, J.R. and Feldman, B.J., Phys.Rev.B. 32, 1317 (1985); S.-H.Lin and B.J.Feldman, Philosophical Mag.B.47, 113 (1983).Google Scholar
6. Pearse, R.W.B. and Gaydon, A.G., The Identification of Molecular Spectra, 4th ed.(Chapman and Hall, London, 1976) p.90 and Plate 4.CrossRefGoogle Scholar
7. Pearse, R.W.B. and Gaydon, A.G., The Identification of Molecular Spectra, 4th ed.(Chapman and Hall, London, 1976, pp.92 and 388.CrossRefGoogle Scholar
8. Roth, R.M., Spears, K.G., and Wong, G., Appl.Phys.Lett. 45, 28 (1984).Google Scholar
9. Robertson, R., Hils, D., Chatham, H. and Gallagher, A., Appl.Phys.Lett. 43, 544 (1983).CrossRefGoogle Scholar
10. Pearse, T.W.B. and Gayden, A.G., op.cit., p.83.Google Scholar
11. Ho, P. and Breiland, W.G., Appl.Phys.Lett. 44, 51 (1984).CrossRefGoogle Scholar
12. From Gutsche, C.D. and Pasto, D.J., Fundamen-tIls of Organic Chemistry, (Prentice Hall, New Jersey, 1975) p.43, the C-C, H-C, O-H, double C-C, and triple C-C bond dissociation energies are approximately 83, 90, 111, 146, and 200 kcals/mole, respectively.Google Scholar
13. Walsh, R., Acc.Chem.Res. 14, 246 (1981).Google Scholar
14. Knights, J.C., Street, R.A., and Lucovsky, G., J.Non-Crystalline Solids 35/36, 279 (1980).CrossRefGoogle Scholar
15. Lin, S.H. and Feldman, B.J., Phys.Rev.B 28, 413 (1983).Google Scholar