Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T11:25:15.323Z Has data issue: false hasContentIssue false

Effect of Uniaxial Strain on the Superconducting Transition Temperature in thin YBa2Cu3O7 Film

Published online by Cambridge University Press:  28 February 2011

S. I. Park
Affiliation:
IBM TJ.Watson Research Center. Yorktown Heights, N.Y. 10598
M. R. Scheuermann
Affiliation:
IBM TJ.Watson Research Center. Yorktown Heights, N.Y. 10598
C. C. Chi
Affiliation:
IBM TJ.Watson Research Center. Yorktown Heights, N.Y. 10598
C. C. Tsuei
Affiliation:
IBM TJ.Watson Research Center. Yorktown Heights, N.Y. 10598
Get access

Abstract

The effect of uniaxial strain e on superconducting transition temperature Tc of thin YBa2Cu3O7 film is presented. The value of TC increases linearly with compressional strain with a slope of -275K/e. Under tensile strain, Tc initially decreases to a value ∼ 0.3K below the zero-strain value and then remains constant with additional strain. In compression, the logarithmic strain derivative of Tc, (1/Tc)(dTc/de), is -3 per unit strain which is slightly less than 4–6 per unit strain observed in conventional superconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, J.G. and Muller, K.A., Z. Phys. B 64, 189 (1986)Google Scholar
2. Laibowitz, R.B., Koch, R.H., Chaudhari, P. and Gambino, R.J., Phys. Rev. B135, 8821 (1987)Google Scholar
3. Naito, M., Hammond, R.H., Oh, B., Hahn, M.R., Hsu, J.W., Resenthal, P., Marshall, A.F., Beasley, M.R., Geballe, T.H. and Kapitulnik, A., Submitted to J. Mat. Res.Google Scholar
4. Oh, B., Naito, M., Arnason, S., Rosenthal, P., Barton, R., Beasley, M.R., Geballe, T.H., Hammond, R.H. and Kapitulnik, A., Appl. Phys. Lett. 51, 852 (1987)Google Scholar
5. Horn, P., Keane, D.T., Held, G.A., Jordan-Sweet, J.L., Kaiser, D.L., Holtzberg, F. and Rice, T.M., submitted to Phys. Rev. Lett.Google Scholar
6. Park, S.I., Tsuei, C.C., and Tu, K.N., to be submitted to Phys. Rev. BGoogle Scholar
7. Hor, P.H., Gao, L., Meng, R.L., Huang, Z.J., Wang, Y.Q., Foster, K., Vassillious, J. and Chu, C.W., Phys. Rev. Lett. 58, 911 (1987)Google Scholar
8. Yoshida, H., Morita, H., Noto, K., Kaneko, T. and Fujimori, H., Jap. J. Appl. Phys. 26, L867 (1987)Google Scholar
9. Scheuermann, M., Chi, C.C., Tsuei, C.C., Yee, D.S., Cuomo, J.J., Laibowitz, R.B., Koch, R., Braren, B., Srinivasan, R. and Plechat, M.M.ý, submitted to Appl. Phys. Lett.Google Scholar
10. McClintock, R.M., Rev. Scient. Instr. 30, 715 (1959)Google Scholar
11. Hall, P.M., J. Appl. Phys. 36, 2471 (1965)Google Scholar
12. Notarys, H.A., Appl. Phys. Lett. 4, 79 (1964)Google Scholar
13. Pupp, W.A., Sattler, W.W. and Saur, E.J., J. Low Temp. Phys. 14, 1 (1974)Google Scholar
14. Freitas, P.P. and Plaskett, T.S., Phys. Rev. B 36, 5723 (1987)Google Scholar
15. Shaw, T. (private communication)Google Scholar
16. Barsch, G.R., Horovitz, B., and Krumhansl, J.A., Phys. Rev. Lett. 59, 1251 (1987)Google Scholar
17. Tu, K.N., Park, S.I. and Tsuei, C.C., submitted to Appl. Phys. Lett.Google Scholar
18. Cook, R.F., Shaw, T.M. amd Duncombe, P.R., in “Ceramic Superconductors”, Ed. Clarke, D.R. and Johnson, D.W., published by American Ceramic Society, 1987 Google Scholar
19. Cook, R.F., Dinger, T.R., and Clarke, D.R., Appl. Phys. Lett. 51, 454 (1987)Google Scholar