Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-17T00:06:09.025Z Has data issue: false hasContentIssue false

Effect of Humic Substances on Americium (III) Retention onto Silica

Published online by Cambridge University Press:  26 February 2011

Valerie Moulin
Affiliation:
Commissariat à l'Energie Atomique, IRDI/ DERDCA/ DRDD/ SESD/ SCPCS BP 6 92265 Fontenay-aux-Roses, FRANCE
Denise Stammose
Affiliation:
Commissariat à l'Energie Atomique, IRDI/ DERDCA/ DRDD/ SESD/ SCPCS BP 6 92265 Fontenay-aux-Roses, FRANCE
Get access

Abstract

The migration/retention phenomena of radionuclides in geological systems are of great interest for the safety assessment of a nuclear disposal. Interactions at solid/liquid interfaces play a significant role in the speculation and transport of radionuclides in aquifer systems. Oxide surfaces and humic substances which occur in natural waters in large concentration ranges (from few mg/1 to several hundred mg/1) may have a major influence on radionuclides behaviour. For this purpose, studies have been carried out on a ternary system: oxide-humic substances-americium (III). The influence of pH, ionic strength and humic concentration on the adsorption of americium onto silica has been investigated. The ionic strength of the solution (0.1 and 0.01) has little effect on the americium adsorption. In the presence of humic materials, the fixation of americium is enhanced at low pH (pH<5) whereas, at higher pH (pH>5), the adsorption is lowered and dependent of humic concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stumm, W. and Morgan, J.J., Aquatic Chemistry. (Wiley-Interscience Publication, 1981).Google Scholar
2. Sibley, T.H. Jr Clayton, E.A. Wurtz, A.L. , Sanchez and Alberts, J.J., Comolexation of Trace Metals in Natural Waters (Kramer, C.J.M. and Drinker, J.C., Martinus Nijhoff, Junk Publ., The Hague, 1984).Google Scholar
3. Stumm, W., Kümmert, R. and Sigg, L., Croatica Chem. Acta 53, 291312 (1980).Google Scholar
4. Ho, C.H. and Miller, N.H., J. Colloid Interface Sci. 106 (2), 281288 (1985).Google Scholar
5. Choppin, G.R. and Allard, B., in Handbook on the Physics and Chemistry of the Actinides. edited by Freeman, A.J. and Keller, C. (North-Holland Publ. Corp., Amsterdam, 3, 1985), Chapter 11.Google Scholar
6. Kim, J.I., in Handbook on the Physics and Chemistry of the Actinides. edited by Freeman, A.J. and Keller, C. (North-Holland Publ. Corp., 4, 1986), Chapter 8.Google Scholar
7. Schindler, P.W., Fürst, B., Dick, R. and Wolf, C.U., J. Colloid Interface Sci. 55 (2), 469475 (1976).Google Scholar
8. Allard, B. and Beali, G.W., J. Environ. Sci. A14 (6), 507518 (1979).Google Scholar
9. Davis, J.A., Geochim. Cosmochim. Acta 46, 23812393 (1982).Google Scholar
10. Yariv, S. and Cross, H., Geochemistry of Colloid Systems (Springer, Berlin, 1979).Google Scholar
11. Allard, B., Moulin, V., Basso, L., Tran, M.T. and Stammose, D., Geoderma accepted for publicationGoogle Scholar
12. Music, S. and Ristic, M., J. Radioanal. Nucl. Chem. 12Q, 289304 (1988).Google Scholar
13. Allard, B., Beali, B. and Krajewski, T., Nuclear Techn. 49, 474480 (1980).CrossRefGoogle Scholar
14. Iler, R.K.. Chemistry of Silica (J. Wiley and Sons Publi., 1979).Google Scholar
15. Moulin, V., Robouch, P., Vitorge, P. and Allard, B., Radiochim. Acta accepted for publicationGoogle Scholar
16. Moulin, V., Robouch, P., Vitorge, P. and Allard, B., Inorg. Chim. Acta 140 303306 (1987).Google Scholar
17. Tipping, E., Griffith, J.R. and Hilton, J., Croatica Chem. Acta 56, 613621 (1983).Google Scholar
18. Sanchez, A.L., Murray, J.W. and Sibley, T.H., Geochim. Cosmochim. Acta 49, 22972307 (1985).Google Scholar