Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-19T16:50:36.513Z Has data issue: false hasContentIssue false

Two-Step Laser Recrystallization of Silicon Stripes in Sio2 Grooves for Crystallographic Orientation Control

Published online by Cambridge University Press:  25 February 2011

K. Egami
Affiliation:
Fundamental Research Laboratories
M. Kimura
Affiliation:
Fundamental Research Laboratories
T. Hamaguchi
Affiliation:
R&D Planning and Technical Service Division
N. Endo
Affiliation:
Microelectronics Research Laboratories, NEC Corporation, Miyazaki, Miyamae-ku, Kawasaki 213, JAPAN
Get access

Abstract

We demonstrate a new two step laser recrystallization for crystallographic orientation control. In the cw Ar ion laser recrystallization of silicon stripes in the structure consisting of SiO2 grooves/polycrystalline Si sublayer/backing substrates, first, one edge of poly-Si stripes is intentionally recrystallized under relatively low laser power and a long dwell time in order to form a strong <100> texture with lamellar grains, second, poly-Si stripes are fully recrystallized using the above <100> texture as seed crystals by scanning a laser beam along the stripes. We discuss a strong <100> texture formation related to partially molten state in the first process of secondary seed formation, and use of a grooved structure with poly-Si sublayer suppressing edge nucleation during lateral epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Biegelsen, D.K., Johnson, N.M., Bartelink, D.J., and Moyer, M.D., Mat. Res. Soc. Symp. Proc., 1, 487 (1981).Google Scholar
2. Stultz, T.J., and Gibbons, J.F., Appl. Phys. Lett., 39, 498 (1981).Google Scholar
3. Tamura, M., Tamura, H., and Tokuyama, T., Jpn. J. Appl. Lett. 44, L23 (1980).Google Scholar
4. Lam, H.W., Pinizzotto, R.F., and Tasch, A.F. Jr, J. Electrochem. Soc., 128, 1981 (1981).Google Scholar
5. Egami, K., Kimura, M., and Hamaguchi, T., Appl. Phys. Lett., 44, 962 (1984).Google Scholar
6. Kimura, M., and Egami, K., Appl. Phys. Lett., 44, 420 (1984).Google Scholar
7. Egami, K., Kimura, M., and Hamaguchi, T., Appl. Phys. Lett., 43, 1023 (1983).Google Scholar
8. Jellison, G.E. Jr, and Modine, F.A., Appl. Phys. Lett., 41, 180 (1982).Google Scholar
9. Egami, K., Kimura, M., Appl. Phys. Lett., 45, 854 (1984).Google Scholar
10. Van Essen, C.G., Schulson, E.M., and Donaghey, R.H., Nature, 225, 847 (1970).Google Scholar
11. Geis, M.W., Antoniadis, D.A., Silversmith, D.J., Mountain, R.W., and Smith, H.I., Appl. Phys. Lett., 37, 454 (1980).Google Scholar
12. Smith, H.I., Thompson, C.V., Geis, M.W., Lemons, R.A., and Bösch, M.A., J. Electrochem. Soc., 130, 2050 (1983).Google Scholar
13. Biösch, M.A., and Lemons, R.A., Phys. Rev. Lett., 47, 1151 (1981).Google Scholar
14. Geis, M.W., Smith, H.I., Tsaur, B-Y, Fan, J.C.C., Silversmith, D.J., and Mountain, R.W., J. Electrochem. Soc., 129, 2812 (1982).Google Scholar
15. Hawkins, W.G., and Biegelsen, D.K., Appl. Phys. Lett., 42, 358 (1983).Google Scholar
16. Celler, G.K., Jackson, K.A., Trimble, L.E., McRobinson, D., and Lischner, D.J., Mat. Res. Soc. Symp. Proc., 23, 409 (1984).Google Scholar
17. Celler, G.K., Robinson, McD., Trimble, L.E., and Lischner, D.J., Appl. Phys Lett., 43, 868 (1983).Google Scholar