Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-12T17:33:57.028Z Has data issue: false hasContentIssue false

Annealing Study of Ion Implanted MOCVD and MBE Grown GaN

Published online by Cambridge University Press:  21 February 2011

E. Silkowski
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433
Y. K. Yeo
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433
R. L. Hengehold
Affiliation:
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433
M. A. Khan
Affiliation:
APA Optics, Blaine, MN 55449
T. Lei
Affiliation:
Wright Laboratory, Wright-Patterson AFB, OH 45433
K. Evans
Affiliation:
Wright Laboratory, Wright-Patterson AFB, OH 45433
C. Cerny
Affiliation:
Wright Laboratory, Wright-Patterson AFB, OH 45433
Get access

Abstract

MOCVD and MBE grown GaN were implanted with Ar, Mg, Si, Be, C, and O, and annealed in a conventional oven under flowing NH3 or N2 gas. Absorption measurements confirmed that implantation damage was annealed out after 90 minutes at a temperature of 1000 °C. Surface damage caused by NH3 annealing was evident in absorption and photoluminescence measurements for annealing temperatures of over 1000 °C. Although most of the implants showed no unique luminescence peaks, systematic changes in the relative intensities of the exciton, donor-acceptor pair, and yellow peaks were noted. The Mg implanted samples showed evidence of the acceptor bound exciton line at 3.44 eV, and a unique peak at 3.3 eV possibly due to a Mg free-to-bound transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pankove, J. I. and Hutchby, J. A., J. Appl. Phys. 47, 5387 (1976).Google Scholar
2 Metcalfe, R. D., Wickenden, D., and Clark, W. C., J. Lum. 16, 405 (1978).Google Scholar
3 Chung, B-C. and Gershenzon, M., J. Appl. Phys. 72, 651 (1992).Google Scholar
4 Khan, M. A., Kuznia, J. N., Van Hove, J. M., Olson, D. T., Krishnankutty, S., and Kolbas, R. M., Appl. Phys. Lett. 58, 526 (1991).Google Scholar
5 Lei, T., Jones, C., Evans, K., Silkowski, E., Yeo, Y. K., Hengehold, R. L., presented at the 1995 MRS Spring Meeting, San Francisco, CA, 1995 (unpublished).Google Scholar
6 PROFILE Code Version 2.1, Implant Sciences Corp, Danvars, MA 1988.Google Scholar
7 Pankove, J. I., Phys. Rev. 140, A2059 (1965).Google Scholar
8 Ilegems, M. and Dingle, R., J. Appl. Phys. 44, 4234 (1973).Google Scholar
9 Nakamura, S., Mukai, T., and Senoh, M., Jpn. J. Appl. Phys. 31, 2883 (1992).Google Scholar
10 Ogino, T. and Aoki, M., Jpn J. Appl. Phys. 19, 2395 (1980).Google Scholar
11 Wilson, R. G., Pearton, S. J., Abernathy, C. R., and Zavada, J. M., Appl. Phys. Lett. 66, 2238 (1995).Google Scholar